شناسایی منطقۀ همگرایی دریای عرب و نقش رودباد تراز پایین سیستان در شکل‌گیری آن

نویسنده

دکتری آب و هواشناسی، دانشگاه تبریز، تبریز، ایران

چکیده

در این پژوهش این فرضیه مورد آزمون قرار گرفت که باد سیستان (باد 120 روزۀ سیستان)، خصوصیت رودبادهای تراز پایین را داشته و پس از در نوردیدن شرق و جنوب‌شرق ایران، وارد بخش شمالی دریای عرب شده و در تقابل با بادهای تجاری جنوبی، منطقه‌ای از همگرایی را به وجود می‌آورند. در این راستا با اجرای آزمون تحلیل عاملی و خوشه‌بندی بر روی داده‌های شبکه‌ای ارتفاع ژئوپتانسیل تراز 850 هکتوپاسکال، طی دورۀ 2012-1993 (از اول خرداد تا آخر شهریور)، 5 خوشه شناسایی شد و از این میان در دو الگوی سینوپتیکی وزش این بادها تشخیص داده شد. در ادامه به محاسبۀ تابع دینامیکی واگرایی افقی در ترازهای 700- 1000 ه.پ و همچنین محاسبۀ واگرایی افقی نیمرخ قائم جو پرداخته شد. در پایان نیز مشخص گردید که این جریان وزش باد، از خصوصیات رودبادهای تراز پایین برخوردار بوده و هستۀ اصلی آن غالباً در تراز 850 ه.پ مستقر است و ادامۀ سرعت آن به ترازهای پایین‌تر و سطح زمین نیز کشیده می‌شود که به نام باد سیستان معروف گردیده است. این رودباد پس از گذر از مناطق شرقی ایران، وارد بخش شمالی اقیانوس هند شده و در برخورد با بادهای تجاری جنوبی، منطقه‌ای از همگرایی را در این منطقه به وجود می‌آورند و غالباً از سطح زمین تا تراز 750 ه.پ گسترش ارتفاعی دارد. همچنین شدت/ ضعف رودباد تراز پایین سیستان، سبب جابه‌جایی منطقۀ همگرایی دریای عرب می‌شود. به‌طوری‌که در زمان شدت رودباد تراز پایین سیستان، منطقۀ همگرایی نیز در عرض‌های جغرافیایی جنوبی‌تر و در زمان ضعف آن، در عرض‌های شمالی‌تر مستقر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification Arabian Sea Convergence Zone and the Role of Sistan LLJ in its Formation

نویسنده [English]

  • Shoaieb Abkharabat
Ph.D. of Climatology, Tabriz University, Tabriz. Iran
چکیده [English]

Sistan wind is one of the most important atmospheric phenomena of warm period of year in Iran plateau which creates environmental different impacts on its dominated region. In the northern hemisphere during summer monsoon, ITCZ moves to higher northern geographic latitude. South Asia summer monsoon system is one of the phenomena which arises from this movement and a tongue extension of Gang low moues towards west, its domination over southern region of Iran, and its penetration to Khozestan plain and Mesopotamia is also one of this movement outcome. In the meantime, in atmospheric low level, Azores high tongue, in this region of the world also has to remain in north territories of Iran (that is over Caspian sea and its surrounding) more than world-wide average. So that, with the pressure gradient between the Caspian sea high and Gang low generates the Sistan wind system, in a way that can be said that this is northern trade wind which blows in the region. The period used in this study was for 2480 days in 22 years (2012-1993) from May until end of September. The atmospheric circulation types were extracted using daily mean of the 850 hPa geopotential height data for these days between 15°–80°E, 5°–50°N, with a 2.5° (lat) × 2.5° (lon) spatial resolution. These data were retrieved from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis archive. Then the agglomerative hierarchical cluster analysis with the ward algorithm and Euclidean distance were used to identify atmospheric circulation types over Iran in mentioned period of years. Because using hierarchical cluster analysis can take maximized within-group similarity and minimized between-group similarity in data, the groups of days with similar characteristics were determined. Then the calculated within-group correlations were used to identify representative days. The day with highest within-group correlation was representative day of atmospheric circulation types. Finally, 5 atmospheric circulation types were identified in this period in which 2 cluster showed the mechanism of in Sistan winds in the southeast of Iran. Then for representative day of atmospheric circulation types in 2 mentioned clusters, wind speed and direction, as well as the wind convergence in levels of in 1000, 925, 850 and 700 hPa and also the convergence in atmospheric vertical profiles were analyzed. This paper identifies that, this wind has the features of LLJ and its core is often at 850 hPa level which is titled and is known as Sistan LLJ. Its speed continuation also stretches to low levels and to the earth surface, as a result it creates Sistan wind near the surface. On the other hand, along with ITCZ belt anomalous movement to northern hemisphere, the southern trade winds also enter northern hemisphere to reach ITCZ belt and after acquiring humidty from Indian ocean and Arabian sea, they enter Indian subcontinent. Now, the assumption is tested that between these two kinds of blowing systems (Sistan LLJ and southern trades) a region of convergence must be created, then with the continuation of the above convergenced, wind sysrem is identified over north of Arabian sea, Pakistan and Iran coasts. This convergence region which establishes at the time of  Sistan LLJ balances with southern trade winds, which determines its location geographic latitude. So that, if Sistan LLJ blows slowly, this convergence region moves to more southern geographic latitudes. also its vertical extension in atmosphere is to the extent that its generating factors (Sistan LLJ and southern trades) exist and when one of these factors, does ascend to the higher level of atmosphere, this convergence region disappears. So that, naturally its establishment can be observed from the earth surface to 750 hPa level, and it often disappears above this level. This convergence region can also be a reason for the issue that during the fact Sistan LLJ the northern trade winds converge with southern trades on Arabian sea. The other indications of these winds are being originated from subtropical high and blowing toward tropical convergence region, so that the Indian monsoon is in fact the southern trades and Sistan LLJ that blow from two sides towards ITCZ.

کلیدواژه‌ها [English]

  • Sistan LLJ
  • Trade winds
  • Arab Sea Convergence Region
  • synoptic
بایرز، ر.، ه.، 1377، هواشناسی عمومی، ترجمه تاج الدین بنی‌هاشم، بهرز حاجبی و علیرضا بهروزیان. تهران: مرکز نشر دانشگاهی.

حسین‌زاده، س.، 1376، بادهای 120 روزۀ سیستان، فصلنامه تحقیقات جغرافیایی، شماره 47، 127-103.

خسروی، م.، 1387، تأثیرات محیطی اندرکنش نوسان‌های رودخانه هیرمند با بادهای 120 روزۀ سیستان، فصلنامه تحقیقات جغرافیایی، شماره 91، صص 49-19.

خسروی، م. و نظری‌پور، ح.، 1391، مطالعه همدید تیپ های هوای غالب منطقه سیستان (مطالعه موردی: ایستگاه زابل)، پژوهش های جغرافیای طبیعی، شماره 44(3): صص 39-62.

جانسون، ر. آ. و ویچرن، د. د.، 1386، تحلیل آماری چند متغیری کاربردی، برگردان حسینعلی نیرومند، مشهد: انتشارات آستان قدس رضوی.

علیجانی، ب. و رئیس‌پور، ک.، 1390، تحلیل آماری همدیدی طوفان‌های گردو خاک در جنوب‌شرق ایران (مطالعه موردی:منطقه سیستان)، فصلنامه مطالعات جغرافیایی مناطق خشک، شماره 5، صص 129-107.

قائمی، ه.، 1375، هواشناسی عمومی، تهران: انتشارات سمت.

کاویانی، م. ر. و علیجانی، ب.، 1382، مبانی آب و هواشناسی، تهران: انتشارات سمت.

گندمکار، ا.، 1389، تعیین گستره افقی باد سیستان با استفاده از تحلیل خوشه‌ای، فصلنامه جغرافیای طبیعی، شماره 10، صص 76-67.

گندمکار، ا. و کیارسی، ف.، 1385، ارزیابی انرژی پتانسیل باد درکشور ایران، بیست و یکمین کنفرانس بین المللی برق. شرکت برق منطقه‌ای تهران، ایران.

لشکری، ح.، 1379، مکانیسم تکوین منطقه همگرایی دریای سرخ، تحقیقات جغرافیایی، شماره 58 و 59، صص 14-1.

مفیدی، ع. و کمالی، س.، 1391، بررسی و تحلیل ساختار توفان‌های گرد و غباری در دشت سیستان با استفاده از مدل اقلیمی مقیاس منطقه‌ای RegCM4؛ مطالعه موردی 30 جولای 2001، اولین همایش ملی بیابان، مرکز بین المللی تحقیقات بیابان، ایران.

نجارسلیقه، م.، 1389، آثار مشترک تقابل حرارتی سیستم‌های جوی در کشورهای اسلامی مطالعه موردی: بادهای 120 روزۀ سیستان، چهارمین کنگره بین المللی جغرافیدانان جهان اسلام. ایران. زاهدان.

یارنال، ب.، 1385، اقلیم شناسی همدید و کاربرد آن در مطالعات محیطی، ترجمه سید ابوالفضل مسعودیان، انتشارات دانشگاه اصفهان، اصفهان.

Alizadeh-Choobari, O., Zawar-Reza, P. and Sturman, A., 2014, The wind of 120 days and dust storm activity over the Sistan Basin, Atmospheric Research, DOI: 10.1016/j.atmosres. Volume 143, pp 328-341.

Bonner, W. D., 1968, Climatology of the low-level jet. Mon. Wea. Rev., 96, 833–850.

Esteban, P., Jones, F. D., Martin-Vide, J. and Mases, M., 2005, “Atmospheric circulation patterns related to heavy snowfall days in Andora, Pyrenees”, International Journal of Climatology, Volume  25, pp 319-329.

Giannakopoulou, E. M. and Toumi, R., 2012, The Persian Gulf summertime low-level jet over sloping terrain, Q. J. R. Meteorol. Soc. 138: pp 145–157.

Godbole, R., 1977, The composite structure of the monsoon depression. Tellus, 29, 25–40.

Goswami, B. N., Ajayamohan. R. S., Xavier P. K. and Sengupta, D., 2003, Clustering of synoptic activity by Indian summer monsoon intraseasonal Oscillations. Geophysical Research Letters. Vol 30. pp 1-13. doi:10 .1029/2002 GL016734.

Goudie, A. and Middelton, N., 2000, Dust storm in the Sout West Asia. Geografica. Volume 12, pp 764–787.

Middelton, N. J., 1986, A geography of dust storms over southwest Asia. Journal. Climatol. Volume 6, pp 183–196.

Miri, A., Ahmadi, H., Ekhtesasi, M. R., Panjehkeh, N. and Ghanbarie, A., 2009, Environmental and socio-economic impacts of dust storms in Sistan Region, Iran. Journal of Environmental Studies, Volume 66, pp 343 – 355.

Ramaswamy, C., 1962, Breaks in the Indian summer monsoon as a phenomenon of interaction between the easterly and the subtropical westerly jet streams. Tellus, 14A, 337–349.

Rashki A., Kaskaoutis, D. G., Rautenbach, C .J., Eriksson, P. G., Qiang, M. and Gupta, P., 2012, Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Research ,Volume 5, pp 51-62.

Wexler, H. 1961, A boundary layer interpretation of the low-level jet. Tellus, 13, pp 368- 378.

Whiteman, C., Bian, X. and Zhong, S., 1997, Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, pp 1363–1375.