عوامل دینامیکی مؤثر بر بارش سنگین برف در تهران: مطالعۀ موردی

نویسندگان

1 دکتری هواشناسی، سازمان هواشناسی کشور، تهران، ایران

2 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

چکیده

رویدادهای بارش سنگین اغلب باعث به‌وجود آمدن خسارات جانی و مالی جبران‌ناپذیر می‌شوند. از این‌رو توانایی و امکان پیش‌بینی صحیحِ وقوعِ این رویدادها برای سازمان‌های هشدار سریع کشورهای مختلف بسیار مهم است. کاربست روش جداسازی عامل‌ها در مطالعۀ رویدادهای بارش سنگین ضمن اینکه امکان تفکیک و بررسی دینامیکی عوامل وردسپهر زِبَرین و زیرین را در یک نمونۀ واقعی می‌دهد، تخمینی کمّی نیز از سهم تعاملی و خالص هریک از عوامل فراهم می‌سازد. یکی از این عوامل، نفوذ زبانه‌ای از هوا با مقادیر بزرگ تاوایی پتانسیلی (PV) مثبت، موسوم به کشانۀ PV، از عرض‌های بالا درپوشن‌سپهر به عرض‌های پایین‌تر در وردسپهر است که موجب کاهش پایداری ایستایی در وردسپهر و شکل‌گیری همرفت می‌شود. بررسی تأثیر این عامل مهم بر میدان‌های هواشناختی با کاربست فن وارون‌سازی تاوایی پتانسیلی صورت می‌گیرد. از دیگر عوامل مهم، اثر کوهستان است که چگونگی این اثر بستگی به آن دارد که جریان هوا به‌وسیلۀ مانع، سَد شود یا از آن عبور کند. در این پژوهش، با استفاده از داده‌های بازتحلیل ERA-Interim و مدل پیش‌بینی عددی میان‌مقیاس WRF، تأثیر چهار عامل شامل بی‌هنجاری PV ترازهای زبرین (کشانۀ PV) و میانیِ وردسپهر و دو رشته‌کوه البرز و زاگرس در رویداد بارش سنگین برف منطقة تهران در روز ششم ژانویۀ 2008 مطالعه و ارزیابی شده است. نتایج نشان می‌دهد که در بارش این روز کشانۀ PV با 5/76 درصد دارای بیشترین تأثیر بوده و پس از آن سهم مشارکت رشته‌کوه البرز قرار دارد و اثر رشته‌کوه زاگرس و بی‌هنجاری PV تراز میانی وردسپهر ناچیز است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The main factors responsible for heavy snowfall in Tehran: A case study

نویسندگان [English]

  • Sakineh Khansalari 1
  • Ali Reza Mohebalhojeh 2
  • Farhang Ahmad-Givi 2
1 Ph.D. of Meteorology, Meteorological Organization, Tehran, Iran
2 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
چکیده [English]

Heavy precipitation events often cause irreparable damage to human and economy. The ability to accurate prediction of the occurrence of such phenomena is very important especially for early warning systems run by operational centers. Identifying the main factors involved in heavy precipitation can result in more accurate predictions. The “factor separation method” (FSM) is used for this purpose. Based on the previous studies on factors affecting heavy precipitation especially in the Alpine region of Europe, and with regard to the geographical location of the Tehran Province, four factors are included in the application of the FSM. These factors are (1) the potential vorticity (PV) anomalies in the upper troposphere manifested in the form of PV streamers, (2) the PV anomalies in the middle troposphere, (3) the Alborz mountain range, and (4) the Zagros mountain range. The contributions of these factors were assessed in the heavy snowfall event of the 6th of January 2008 in Tehran by applying the FSM using the ERA-Interim data and the WRF (Weather Research and Forecasting) model. To apply the FSM, 16 simulations, which cover all possible combinations of the four factors, were performed by the WRF model using 3 nested domains with horizontal resolutions of 45, 15, and 5 kilometers, respectively, and 60 vertical levels. These 16 simulations are:  the control run (1), the removal of PV anomalies of the upper (2) and the middle (3) levels of the troposphere, the reduction of the heights of the Alborz (4) and Zagros (5) mountain ranges, the removal of two-factor combinations (6 to 12), the removal of three-factor combinations (13 to15), and the removal of the four factors (16). To carry out the experiments involving the removal of PV anomalies, a PV inversion procedure was used to construct the initial states.
On the 6th of January 2008, a case of heavy snowfall occurred in a significant part of the country from Tehran to the west in the south of the Alborz mountains. The case involved the intrusion of cold and dry air with large positive PV anomalies from the stratosphere to the upper troposphere in the form of a PV streamer. The PV streamer acts to substantially decrease the static stability in the lower to the middle troposphere. The resulting PV anomalies are associated with low-level winds, which can provide the low-level moisture supply for the precipitation event. The results show that the PV streamer is the factor with the highest impact. The independent contribution of the PV streamer is about 76.5% as obtained by the detailed analysis of the FSM using the outputs of 16 simulations. Another factor to consider is orography which can block air flows or lead to substantial ascent or descent. The magnitude of the impact due to orography depends on the characteristics of the flows over and around the mountains. The determining properties of the flows are the angle of hitting the mountains and the intensity of the flow. In those simulations that the altitude of the Alborz mountain range was reduced, the dominant air flow was from the windward to the leeward side of the mountain. As a result of the increase in the penetration of the cold air from the windward to the leeward of the Alborz mountain range, the pressure on the windward (leeward) of the mountains reduces (increases). In other words, the pressure gradient is reduced in the Tehran area, when the height of the mountains is reduced. So the warm front in the southern slopes of Alborz mountain ranges is weakened. The results of the corresponding simulations and the application of the FSM show that the contribution of the Alborz mountain range in this case is next to the upper-level PV anomalies. Quantitatively, the absolute contribution of the Alborz-mountain factor is about 48% in the case of the heavy snowfall that occurred in Tehran. Finally, it is worth mentioning that the Zagros mountain range and the PV anomalies of the middle troposphere play negligible role in this case. 

کلیدواژه‌ها [English]

  • heavy precipitation
  • potential vorticity streamer
  • mountain effect
  • factor separation method
  • potential vorticity inversion
خان‌سالاری، س.، 1395،تعیین سازوکارهای واداشت رویدادهای بارشی مهم سرد در منطقه تهران از دیدگاه تاوایی پتانسیلی. رساله دکتری هواشناسی، موسسۀ ژئوفیزیک، دانشگاه تهران.

رنجبر سعادت‌آبادی، ع. و ایزدی، پ.، 1392، ارتباط بی‌هنجاری‌های دمای آب سطح اقیانوس هند و دریای

عرب با بی‌هنجاری‌های بارش نیمه جنوبی ایران.
مجله فیزیک زمین و فضا، جلد 39، شماره 4، 157-135.

سلطانزاده، ا.، احمدی‌گیوی، ف. و ایران‌نژاد، پ.، 1384، بررسی سه‌ماهه تأثیر رشته‌کوه زاگرس بر جریان میان‌مقیاس منطقه شرق زاگرس با استفاده از مدل منطقه‌ای RegCM. مجله فیزیک زمین و فضا، جلد 33، شماره 1، 50-31.

شبانیان چالش‌تری، ا.، نصراصفهانی، م. ع. و ارکیان، ف.، 1394، بررسی عوامل مؤثر بر بارش‌های تابستانی در یک ناحیه با کوهساری پیچیده (مطالعۀ موردی: سیل استان گلستان 8 تیر 1391). مجله فیزیک زمین و فضا، جلد 41، شماره 3، 577-565.

علیزاده، ا.، آزادی، م. و علی‌اکبری بیدختی، ع. ع.، 1385، بررسی نقش رشته‌کوه البرز در تقویت سامانه‌های همدیدی. مجله فیزیک زمین و فضا، جلد 34، شماره 1، 24-9.

Appenzeller, C. and Davies, H. C., 1992, Structure of stratospheric intrusions into the troposphere. Nature, 358, 570-572.

Argüeso, D., Hidalgo-Muñoz, J. M., Gámiz-Fortis, S. R., Esteban-Parra, M. J., Dudhia, J. and Castro-Diez, Y., 2011, Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep regionalization. J. Climate, 24, 5633-5651.

Chen, J.-M., Tan, P.-H. and Shih, C. F., 2013, Heavy rainfall induced by tropical cyclones across northern Taiwan and associated intraseasonal oscillation modulation. J. Climate, 26, 7992-8007.

Hoskins, B. J., McIntyre, M. E. and Robertson, A. W., 1985, On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877-946.

Jakob, C. and Schumacher, C., 2008, Precipitation and latent heating characteristics of the major tropical western Pacific cloud regimes. J. Climate, 21, 4348-4364.

Jankov, I., Jr. Gallus, W. A., Segal, M., Shaw, B. and Koch, S. E., 2005, The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. and Forecasting, 20, 1048-1060.

Martius, O., Schwierz, C. and Davies, H. C., 2008, Far-upstream precursors of heavy precipitation events on the Alpine south-side, Quart. J. Roy. Meteor. Soc., 134, 417-428.

Martius, O., Zenklusen, E., Schwierz, C. and C. Davies, H., 2006, Episodes of Alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 1149-1164.

Morgenstern, O. and Davies, H. C., 1999, Disruption of an upper level PV-streamer by orographic and cloud-diabatic effects. Contrib. Atmos. Phys., 72, 173-186.

Ntwali, D., Ogwang, B. A. and Ongoma, V., 2016, The impacts of topography on spatial and temporal rainfall distribution over Rwanda based on WRF model. Atmos. Clim. Sci., 6, 145-157.

Reed, R. J., Simmons, A. J., Albright, M. D. and Unden, P., 1988, The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Wea. and Forecasting, 3, 217-229.

Schlemmer, L., Martius, O., Sprenger, M., Schwierz, C. and Twitchett, A., 2010, Disentangling the forcing mechanisms of a heavy precipitation event along the Alpine south side using potential vorticity inversion. Mon. Wea. Rev., 138, 2336-2353.

Sprenger, M., 2007, Numerical piecewise potential vorticity inversion: A user guide for real-case experiments. Thesis for postgraduate course in computer science FHSS Schweiz, 98 pp.

Stein, U. and Alpert, P., 1993, Factor separation in numerical simulations. J. Atmos. Sci., 50, 2107-2115.

Thorncroft, C. D., Hoskins, B. J. and McIntyre, M. E., 1993, Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 17-56.

Twitchett, A., 2012, Predictability and dynamics of potential vorticity streamers and connections to high impact weather. PhD Thesis, University of Leeds.

Wiegand, L., Twitchet, A., Schwierz, C. and Knippertz, P., 2011, Heavy precipitation at the Alpine south side and Saharan dust over central Europe: A predictability study using TIGGE. Wea. and Forecasting, 26, 958-974.