امواج سالیتونی در پلاسمای میان‌ستاره‌ای با الکترون‌های دارای توزیع کرنز در حضور یون‌های منفی

نویسندگان

1 دانشجوی دکتری، بخش اتمی و مولکولی (گروه پلاسما)، دانشکدۀ فیزیک، پردیس علوم، دانشگاه یزد، یزد، ایران

2 استادیار، بخش اتمی و مولکولی (گروه پلاسما)، دانشکدۀ فیزیک، پردیس علوم، دانشگاه یزد، یزد، ایران

چکیده

در این مقاله انتشار مایل امواج سالیتونی غیر‌خطی یونی صوتی در پلاسمای میان‌ستاره‌ای نسبیتی ضعیف و غیر‌برخوردی در حضور یون‌های مثبت و منفی و الکترون‌های غیر‌گرمایی (با توزیع کرنز) بوسیلۀ روش اختلال کاهش‌یافته مطالعه شده است. در این مقاله رابطۀ کورتوک-دی وریز یا KdV (Korteweg-de Vries) که دارای جواب انتشار مایل امواج سالیتونی است، به دست آمده است. اثر سرعت یون‌ها و الکترون‌های غیر‌گرمایی را روی دامنه و پهنای امواج سالیتونی بررسی و همچنین اثر پارامترهایی مثل میدان مغناطیسی و چگالی یون‌ها را مطالعه کرده‌ایم. ما به این نتیجه رسیدیم که معادلۀ پراکندگی (که یک معادلۀ درجۀ چهار است) دارای چهار ریشه است ولی چهار ریشۀ آن به معنای وجود چهار موج سالیتونی نخواهد بود و محاسبات عددی نشان می‌دهد که فقط به‌ازای دو ریشۀ آن دو نوع مد یونی صوتی ( مد تند و کند) در پلاسمای درنظر گرفته‌شده در این مقاله وجود دارد. مد تند وابسته به انتشار سالیتون‌های متراکم است، در حالی که مد کند وابسته به انتشار مد رقیق‌شونده است. همچنین انرژی سالیتون‌ها را محاسبه و اثر پارامترهای پلاسما بر آن را بررسی کرده‌ایم. دامنۀ هر دو نوع سالیتون با افزایش زاویۀ بین بردار موج و میدان مغناطیسی، سرعت سوق نسبیتی یون، چگالی یون منفی و پارامتر غیرگرمایی افزایش می‌یابد. قدرت میدان مغناطیسی، دامنۀ هیچکدام از دو نوع سالیتون را تغییر نمی‌دهد اما پهنای آن‌ها را کاهش می‌دهد. با افزایش سرعت سوق نسبیتی یون، دامنۀ سالیتون‌ها افزایش یافته ولی پهنای آن‌ها کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Solitary waves in interstellar plasma with Cairns distributed electrons in the presence of negative ions

نویسندگان [English]

  • Hosein Salmanpoor 1
  • Mehdi Sharifian 2
1 Ph.D. Student, Atomic and Molecular Division, Physics Department, Faculty of science, Yazd University, Yazd, Iran
2 Assistant Professor, Atomic and Molecular Division, Physics Department, Faculty of science, Yazd University, Yazd, Iran
چکیده [English]

Plasma with both negative and positive ion species and electrons is called negative ion plasma. This type of plasma has a great importance in various fields of plasma science and technology. Among the nonlinear structures, ion-acoustic solitons present the most important aspect of nonlinear phenomena in modern plasma research. When the velocity of the ions and the electrons is much smaller than that of the light, an ion-acoustic soliton exhibits the non-relativistic behavior in the plasmas. But, when the electron and the ion velocities approach the velocity of light in the plasma, relativistic effects dominantly change the soliton behavior. Relativistic plasmas can be found in many situations. Nonlinear structures are usually investigated by using some form of perturbation method. In small amplitude approximation, we usually derive nonlinear partial differential equation like Korteweg–de Vries (KdV) or modified KdV and etc.
A great numbers of authors used the reductive perturbation technique, Bharuthramand and Shukla (1986); Yadav and Sharma (1991) studied ion-acoustic solitons. Rizzato (1988) showed that plasmas with components such as positrons in addition to electron and positive ions behave differently. The positrons can be used to probe particle transport in tokamaks and since they have sufficient lifetime, the two-component (e-i) plasma becomes a three-component (e-i-p) one (Surko and Murphy 1990). We know that when the ion velocity approaches the velocity of light, relativistic effects may significantly modify the behavior of the solitary waves. Relativistic plasmas occur in a variety of situations, such as, space plasma phenomena (Grabbe 1989), laser–plasma interaction (Arons 1979), plasma sheet boundary layer of earth’s magnetosphere (Vette 1970) and describing the Van Allen radiation belts (Ikezi 1973). The weakly relativistic effects on ion-acoustic wave propagation in one dimension using the KdV equation for cold plasma without electron inertia have been investigated (Das and Paul 1985). Nejoh (1987) has investigated the same results in the warm plasmas. Kalita et al. (1996) have investigated the existence of solitons considering the complete fluid equation of electrons. EL-Labany (1995) investigated the contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic plasma consisting of a warm ion fluid and hot non-isothermal electrons by using reductive perturbation theory. EL-Labany et al. (1996) have investigated ion-acoustic solitary waves in weakly relativistic warm plasma at the critical phase velocity by reductive perturbation theory. Large amplitude Langmuir and ion-acoustic waves in relativistic two fluid plasmas deriving the pseudo potential has been considered by Nejoh (1987). The oblique propagation of nonlinear ion acoustic solitary waves (solitons) in magnetized collision less and weakly relativistic space plasma with positive and negative ions and non-thermal (Cairns distributed) electrons is examined by using reduced perturbation method to obtain the Korteweg-de Vries (KdV) equation that admits an obliquely propagating soliton solution. We investigated the effect of ions velocity and non-thermal electrons on amplitude and width of solitary waves and also other effective parameters on them. We find out that four modes exist in our plasma model but the numerical analysis showed that only two types of ion acoustic modes (fast and slow) exist in the plasma. The fast mode corresponds to the propagation of compressive solitons, whereas the rarefactive solitons exist for the slow mode. We also calculated the energy of soliton and discussed the effect of plasma parameters on it. The amplitude of both types of solitons increases with the angle between the wave vector and magnetic field, the relativistic ion drift velocity, negative ion density and also with non-thermal parameter. The strength of the magnetic field doesn’t change the amplitude of soliton (for both types) but makes its width smaller. With increasing relativistic ions drift velocity the amplitudes of solitons become larger but their widths become smaller.

کلیدواژه‌ها [English]

  • Interstellar Plasma
  • Ion acoustic waves and KdV equation
Arons, J., 1979, Some problems of pulsar physics or I'm madly in love with electricity. Space Science Reviews 24(4), 437-510.
Bandyopadhyay, A. and Das, K. P., 2001, Stability of Ion-Acoustic Double Layers in a Magnetized Plasma Consisting of Warm Ions and Nonthermal Electrons. Physica Scripta 63(2), 145.
Bhattacharyya, B., 1983, Dominance of ion motion over electron motion in some intensity-induced wave processes in a magnetized plasma. Physical Review A 27(1), 568-571.
Bharuthram, R. and Shukla, P., 1986, Large amplitude ion‐acoustic double layers in a double Maxwellian electron plasma. Physics of Fluids (1958-1988) 29(10), 3214-3218.
Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P., 1996, Ion-acoustic solitons in a magnetized plasma with nonthermal electrons. Physica Scripta 1996(T63), 80.
Cairns, R. A., Mamun, A. A., Bingham, R., Boström, R. Dendy, R. O., Nairn, C. M. C. and Shukla, P., 1995, Electrostatic solitary structures in non-thermal plasmas." Geophysical research letters 22(20), 2709-2712.
Das, G. and Paul, S., 1985, Ion‐acoustic solitary waves in relativistic plasmas. Physics of Fluids (1958-1988) 28(3), 823-825.
Das, G. C. and Tagare, S. G., 1975, Propagation of ion-acoustic waves in a multi-component plasma. Plasma Physics 17(12), 1025.
Dovner, P. O., Eriksson, A. I., Boström, R. and Holback, B., 1994, Freja multiprobe observations of electrostatic solitary structures. Geophysical Research Letters 21(17), 1827-1830.
El-Labany, S. K. and Shaaban, S. M., 1995, Contribution of higher-order nonlinearity to nonlinear ion-acoustic waves in a weakly relativistic warm plasma. Part 2. Non-isothermal case. Journal of Plasma Physics 53(2), 245-252.
El-Labany, S. K., Nafie, H. O. and El-Sheikh, A., 1996, Ion-acoustic solitary waves in a weakly relativistic warm plasma at the critical phase velocity. Journal of Plasma Physics 56(1), 13-24.
Grabbe, C., 1989, Wave propagation effects of broadband electrostatic noise in the magnetotail. Journal of Geophysical Research 94, 17299-17304.
Ikezi, H., 1973, Experiments on ion-acoustic solitary waves. Research report 149, 1-36.
Kalita, B. C., Barman, S. N. and Goswami, G., 1996, Weakly relativistic solitons in a cold plasma with electron inertia. Physics of Plasmas 3(1), 145-148.
Kaw, P. and Dawson, J., 1970, Relativistic Nonlinear Propagation of Laser Beams in Cold Overdense Plasmas. Physics of Fluids 13(2), 472-481.
Mamun, A. A. , 2000, Rarefactive ion-acoustic electrostatic solitary structures in nonthermal plasmas. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 11(1), 143-147.
Malik, H., 1996, Ion acoustic solitons in a weakly relativistic magnetized warm plasma. Physical Review E 54(5), 5844.
Mishra, M. K., Chhabra, R. S. and Sharma, S. R., 1994, Obliquely propagating ion-acoustic solitons in a multi-component magnetized plasma with negative ions. Journal of Plasma Physics 52(3), 409-429.
Nakamura, Y. and Tsukabayashi, I., 1984, Observation of Modified Korteweg-de Vries Solitons in a Multicomponent Plasma with Negative Ions. Physical Review Letters 52(26), 2356-2359.
Nejoh, Y., 1987, A two-dimensional ion acoustic solitary wave in a weakly relativistic plasma. Journal of Plasma Physics 38(3), 439-444.
Pakzad, H. R., 2010, Ion acoustic solitons of KdV and modified KdV equations in weakly relativistic plasma containing nonthermal electron, positron and warm ion, Astrophysics and Space Science 332(2), 269–277.
Rizzato, F., 1988, Weak nonlinear electromagnetic waves and low-frequency magnetic-field generation in electron-positron-ion plasmas. Journal of plasma physics 40(02), 289-298.
Yadav, L. L. and Sharma, S. R., 1991, Obliquely propagating ion-acoustic double layers in a multicomponent magnetized plasma, Physica Scripta, 43(1), 106.