استخراج خودکار مشاهدات اپتیکی جهت تعیین مدار اولیه ماهواره‌ها

نویسندگان

1 استادیار، دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده‌های فنی دانشگاه تهران، ایران

2 دانشیار، دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده‌های فنی دانشگاه تهران، ایران

3 دانشجوی کارشناسی ارشد، دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، پردیس دانشکده‌های فنی دانشگاه تهران، ایران

4 دانشیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

تعیین مدار در یک جمله، کاربرد انواع تکنیک­ها جهت برآورد مدار اجرام فضایی نظیر ماه، سیارات و فضاپیماها می­باشد. تعیین موقعیت مداری امکان شناسایی اجرام موجود در فضا را فراهم می­آورد. به این معنی که می­توان جرم مورد نظر را در کاتالوگ آرشیوی تعیین مدار موجود جستجو کرد و در صورت عدم وجود در آرشیو به ‌عنوان جرم جدید، کاتالوگ کرد. به‌منظور تعیین موقعیت مداری، مشاهدات به‌صورت اطلاعات خام در فرآیند تعیین مدار مورد استفاده قرار خواهند گرفت. مشاهدات مختلفی ممکن است جهت تعیین مدار اولیه مورد استفاده قرار گیرند، ولی از آنجا که استخراج مشاهدات طولانی، مشکل، گران و گاهی اوقات غیرممکن است، از مشاهدات زاویه­ای استفاده می­شود. در این مقاله روشی جدید برای استخراج مشاهدات زاویه­ای از طریق سیستم تصویربرداری اپتیکی ارائه شده است. در این روش با استفاده از یک CCD و تلسکوپ مناسب، تصویری از آسمان که دارای اطلاعاتی مربوط به ستاره­ها و رد پای ماهواره است، ثبت می‌شود. از آنجا که برای انجام تعیین مدار اولیه باید مقدار آزیموت و زاویه ارتفاعی حداقل دو نقطه از مدار ماهواره در یک فاصله زمانی در اختیار باشد، در این تحقیق روشی خودکار جهت استخراج مدل اثر رد ماهواره ارائه شده است تا با استفاده از مدل استخراج شده مختصات نقاط ابتدا و انتها تشخیص داده شوند. جهت ارزیابی روش پیشنهادی سمت ‌و سوی استخراج شده از رد ثبت شده ماهواره مدار ارتفاع بالا MUOS (Mobile User Objective System) با مقادیر نظیر آن مستخرج از مدار دقیق مقایسه شده‌اند. نتایج حاصل بیانگر اختلافی در حد میلی‌ثانیه می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Automatic optical observation extraction for the initial satellite orbit determination

نویسندگان [English]

  • saeed Farzaneh 1
  • Mohammad Ali Sharifi 2
  • mona Kosary 3
  • mahdi Modiri 4
1 Assistant Professor, Department of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran, Iran
2 Associate Professor, Department of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran, Iran
3 M.Sc. Student, Department of Surveying and Geomatics Engineering, Faculty of Engineering, University of Tehran, Iran
4 Associate Professor , Maleke Ashtar University, Tehran, Iran
چکیده [English]

In recent years, the development in the space industry and the ability of building, launching and infusion of satellites in the lower orbit has put the limited number of countries with such technology. In order to complete the entire cycle of the space industry, the satellite navigation and control, which have been neglected since the beginning of the movement of space science, has to be considered specially. The orbit determination in one sentence is the application of a variety of techniques for estimating the orbits of objects such as the moon, planets, and spacecraft. In dynamic astronomy, the orbit determination is the process of determining orbital parameters with observations. In particular, orbit determination of planets of solar system is adjustment of noisy orbital observation that consist of random and systematic error for force models and estimation of model parameters by observation (In order to access a mathematical model that illustrates the path of the celestial object in the path before and after the observation time). To simplify, this process is divided into two parts. First, the initial orbit is estimated and then make corrections to the determined orbit.
The purpose of initial orbit determination of object that is moving around earth, is calculation of object orbital parameters by a few observations; furthermore initial orbit determination is used for detecting missing object in space. To determine the precise orbit, it is necessary to determine the initial orbit with good accuracy, which indicates the importance of the initial orbit determination. Different type of observations is used to make an initial orbit determination in which observations can be collected by ground stations that contain angular angles, elevations, distance, and distance rate. These observations are made by the radar and the telescope, because the collection of observations without instrument and naked eye does not have enough precision and sensitivity for determination of the space object orbit, but since the extraction of distance observation is expensive and sometimes impossible, angular observation is used.
In this paper, a new method has been presented for extracting angular viewing through an optical imaging system. This method is an automatic and efficient method with the ability of real-time data analysis and the base of that is astronomical imaging by CCDs (charge-coupled device). The images captured by this method have a lot of information about stars, galaxy, satellites’ streak, etc. In this paper, automatic method is presented for streak detection which consist of 5 steps: 1) image denoising, 2) extracting of star centers, 3) extracting astronomical coordinates of stars (declination and right ascension), 4) matching between astronomical and pixel coordinate of stars, 5) calculation of satellite streak model. Then, with using the extracted model, the coordinates of beginning and end points are detected. With the celestial coordinates of beginning and end point of streak Azimuth and elevation of satellite on both sides are determined. On the other hand, to evaluate the proposed method and the validity of the input parameters for initial orbit determination, the azimuth and elevation values of the beginning and end points of streak can be calculated by precise orbit file and then these results compare with results of purposed method. Comparing results indicate a difference of about milliseconds.

کلیدواژه‌ها [English]

  • satellite tracking
  • satellite streak detection
  • MSAC
  • DBSCAN clustering
فرزانه. س.، 2008، تشخیص اتوماتیک ستاره در یک سیستم نجوم ژئودتیکی بینایی مبنا. پایان­نامه کارشناسی ارشد، دانشگاه تهران.

Buades, A., Coll , B. and Morel, J. M., 2005, A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, 4(2), 490-530.

Curtis, H. D., 2013, Orbital Mechanics for Engineering Students. Butterworth-Heinemann.

Erdem, E., 2013, Nonlinear Diffusion.

Ester, M., Kriegel, H. P., Sander, J. and Xu, X., 1996, A density-based algorithm for discovering clusters in large spatial databases with noise.

Fischler, M. A. and Bolles R. C., 1981, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.

Gagliardi, R. M. and Karp, S., 1976, Optical communications, 445, 1.

Gerig, G., Kubler, O., Kikinis, R. and Jolesz, F. A., 1992, Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11(2), 221-232.

Gonzalez, R. C. and Woods, R. E., 2009, Digital Image Processing, Pearson Education.

Hejduk, M., Lambert, J., Williams, C. and Lambour, R., 2004, Satellite detectability modeling for optical sensors. AMOS Technical Conference.

Koenderink, J. J., 1984, 'The structure of images, Biological Cybernetics, 50, 363-396.

Lindeberg, T., 1994, 'Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied Statistics, 21(2), 224-270.

Montenbruck, O. and Gill, E., 2012, Satellite orbits: models, methods and applications. Springer Science & Business Media.

Perryman, M. A. C., Lindegren, L., Kovalevsky, J., Hoeg, E., Bastian, U., Bernacca, P. L., Crézé, M., Donati, F., Grenon, M., Grewing, M., van Leeuwen, F., van der Marel, H., Mignard, F., Murray, C. A., Le Poole, R. S., Schrijver, H., Turon, C., Arenou, F., Froeschlé, M. and Petersen, C. S., 1997,The HIPPARCOS catalogue. Astronomy and Astrophysics, 323, L49-L52.

Sharifi, M. A., Farzaneh, S. and Kosary, M., 2017, Automatic satellite streaks detection in astronomical images. Journal of the Earth and Space Physics.

Stöveken, E. and Schildknecht, T., 2005, Algorithms for the Optical Detection of Space Debris Objects.

Schildknecht, T., 1994, Optical astrometry of fast moving objects using CCD detectors. Geod.-Geophys. Arb. Schweiz, 49.

Van der Wal, A. C., Becker, A., Van der Loos, C. and Das, P., 1994, Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology, 89(1), 44-36.

Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P., 2004, Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612.

Weeratunga, S. K. and Kamath, C., 2002, PDE-based nonlinear diffusion techniques for denoising scientific and industrial images: an empirical study. Electronic Imaging 2002, International Society for Optics and Photonics.

Weeratunga, S. K. and Kamath, C., 2003, Comparison of PDE-based non-linear anistropic diffusion techniques for image denoising. Electronic Imaging 2003, International Society for Optics and Photonics.

Witkin, A.P., 1983, Scale-space filtering, In International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, 2, 1019-1021.