مطالعه موردی تأثیر برخی خصوصیات دینامیکی و خردفیزیکی ابر بر آذرخش درون‌ابری با استفاده از مدل WRF

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

2 استادیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

3 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

چکیده

از مشخصه­های بارز توفان­های تندری، آذرخش است. فعالیت آذرخش معمولاً 10 تا 20 دقیقه زودتر از بارش صورت می­گیرد و همچنین آذرخش­های درون­ابری زودتر از آذرخش­های ابر به زمین رخ می­دهند. در این پژوهش به‌منظور مطالعه اثر برخی خصوصیات دینامیکی و خردفیزیکی ابر بر میدان الکتریکی و آذرخش درون­ابری از مدل WRF برای شبیه­سازی دو رخداد توفان تندری با مقادیر CAPE متفاوت در منطقه تهران استفاده شد. در این راستا، طرح‌واره تفکیک بار بر اساس نظریه غیر القایی پیشنهادی توسط ساندرز و همکاران (1991) تهیه و در مدل جایگذاری شد و شدّت میدان الکتریکی درون­ابری محاسبه شد.
نتایج حاصل از شبیه‌سازی‌ها و بررسی نیمرخ قائم نسبت­های آمیختگی گویچه برف و بلور یخ نشان­دهنده‌ی حضور گویچه­های برف در ترازهایی پایین­تر از تراز تجمع بلورهای یخ بود. همچنین، نیمرخ قائم بار کل انتقال­یافته به گویچه برف نشان داد که بیشینه بار منتقل­شده به گویچه برف با تراز تجمع گویچه­های برف هم­خوانی دارد. بررسی سری زمانی پارامترهای ذکر شده نیز نشان داد زمان­هایی که سرعت قائم بالارو افزایش پیدا می­کند، نسبت آمیختگی گویچه برف و همچنین بار انتقال­یافته به آن افزایش پیدا کرده است. مقایسه دو مطالعه موردی نشان داد که قرارگیری بیشینه مقادیر سرعت قائم بالارو مابین ارتفاع بیشینه تجمع گویچه­های برف و بلورهای یخ تأثیر بیشتر و بارزتری بر بار انتقال­یافته و میزان فعالیت آذرخش درون­ابری دارد. بررسی و تحلیل قطبش بارها نیز نشان داد که ساختار غالب بارهای الکتریکی عمدتاً به‌صورت دو قطبی بوده و این نوع قطبش بیان می­کند که در موردهای بررسی شده، عمدتاً آذرخش­های درون­ابری رخ داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Case study of the impact of some of dynamical and microphysical properties of cloud on the intra-cloud lightning using WRF model

نویسندگان [English]

  • Morteza Hosseini 1
  • Maryam Gharaylou 2
  • Majid M. Farahani 3
1 M.Sc. Graduated, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
2 Assistant Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
3 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
چکیده [English]

Lightning is one of the distinct characteristics of thunderstorms. This phenomenon is the most important natural hazards for the power stations, the airline industry, wind farms, forestry management and public due to the high current and temperature at lightning channels. Lightning activity usually occurs 10 to 20 minutes earlier than precipitation and so is needed for the skill of short-term forecasts.
In this research, to study some of dynamical and microphysical properties of intra-cloud electric field and lightning, the Mesoscale WRF model was used for simulation of two thunderstorm events (on 15 and 17 April 2012) with different CAPE in Tehran area. It is noteworthy that these case studies have been chosen according to data taken from the Iranian Meteorological Organization (IRIMO) and Lightning Imaging Sensor (LIS). Simulations were conducted using the WRF model initiated by FNL data and are provided in 1 degree space and 6-hour time resolution. Each of the simulations was performed for 36 hours and the first 12 hours of simulation were considered as the spin-up time. It uses one-way nesting for 3 meshes of 27-, 9- and 3-km horizontal grid spacings. Thirty-five vertical levels with a maximum height of 50 hPa were used for all domains. Then, the charge separation scheme was coded based on Saunders et al. (1991) relations. Then, the intensity of the intra-cloud electric field was calculated using outputs of the WRF model simulations and Saunders‘s scheme for two selected case studies.
Comparison of the intensity of the intra-cloud electric field and threshold electric field, resulted the time of occurrence of intro-cloud lightning. Also, the effect of maximum values of graupel and ice mixing ratios and maximum values of vertical velocity on charge separation was investigated. To verify the results, output of LPI index was compared to LIS data. Vertical profiles of graupel and ice mixing ratios showed the presence of graupels in the lower levels compared to ice crystals. Also, vertical profile of the charge transferred per collision showed that the maximum values of that is consistent with the presence level of graupels. Moreover, time series of above mentioned parameters showed that the increase of vertical velocity lead to not only the increase of the graupel mixing ratio but also the increase of charge transferred per collision. The results also showed that the time of lightning occurrence well matched with the occurrence time of maximum values of the above mentioned parameters. The LPI index well predicted the time evolution of lightning activity in the study area despite of a relative inability to predict the likely area of lightning activity. Comparison between two case studies showed that the presence of updraft core between the core of graupels and ice crystals had more influence on charge transferred and intro-cloud lightning activity. Analysis of charge polarization also showed that the co-existence of graupel and ice crystal was necessary for charge separation. It also showed that the dominant structure of the electric charges were mainly bipolar, and this kind of polarization resulted in the occurrence of intro-cloud lightning based on previous researches.

کلیدواژه‌ها [English]

  • Lightning
  • Graupel
  • Ice crystal
  • vertical velocity
  • WRF model
  • LPI
قرایلو، م.، پگاه فر، ن. و بیدختی، ع.ع، 1393، مدل‌سازی انتقال بار الکتریکی درون ابر (آذرخش) و پیاده‌سازی آن در یک مدل پیش‌یابی یک‌بعدی ابر قائم، مجله فیزیک زمین و فضا، جلد 40 شماره 1، صفحات 137-148.
قرایلو، م.، ثابت‌قدم، س. و قادر، س.، 1395، پیش­بینی رخداد آذرخش با استفاده از مدل میان‌مقیاس WRF در منطقه ایران، مجله فیزیک زمین و فضا، جلد 42 شماره 1، صفحات 213-220.
Ackerman, S. and Knox, J. A., 2006, Meteorology: understanding the atmosphere. Cengage Learning.
Bright, D. R., Wandishin, M. S., Jewell, R. E. and Weiss, S. J., 2005, January. A physically based parameter for lightning prediction and its calibration in ensemble forecasts. Preprints, Conf. on Meteor. Appl. of Lightning Data, Amer. Meteor. Soc., San Diego, CA (Vol. 3496, p. 30).
Chen, F. and Dudhia, J., 2001, Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569-585.
Deierling, W. and Petersen, W. A., 2008, Total lightning activity as an indicator of updraft characteristics. Journal of Geophysical Research: Atmospheres, 113(D16).
Deierling, W., Petersen, W. A., Latham, J., Ellis, S. and Christian, H. J., 2008, The relationship between lightning activity and ice fluxes in thunderstorms. Journal of Geophysical Research: Atmospheres, 113(D15).
Dementyeva, S. O., Ilin, N. V. and Mareev, E. A., 2015, Calculation of the Lightning Potential Index and electric field in numerical weather prediction models. Izvestiya. Atmospheric and Oceanic Physics, 51(2), p. 186.
Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077-3107.
Janjic, Z. I., 1996, The Mellor-Yamada level 2.5 turbulence closure scheme in the NCEP Eta Model. WORLD METEOROLOGICAL ORGANIZATION-PUBLICATIONS-WMO TD, 4-14.
Janjić, Z. I., 1990, The step-mountain coordinate: physical package. Monthly Weather Review, 118(7), 1429-1443.
Janjić, Z. I., 1994, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927-945.
Kain, J. S. and Fritsch, J. M., 1993, Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The representation of cumulus convection in numerical models, 165-170, American Meteorological Society.
Lin, P. F., Chang, P. L., Jou, B. J. D., Wilson, J. W. and Roberts, R. D., 2011, Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Weather and Forecasting, 26(1), 44-60.
Lin, Y. L., Farley, R. D. and Orville, H. D., 1983, Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6), 1065-1092.
Liu, Y., Chen, F., Warner, T. and Basara, J., 2006, Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. Journal of applied meteorology and climatology, 45(7), 912-929.
Lynn, B. and Yair, Y., 2010, Prediction of lightning flash density with the WRF model. Advances in Geosciences, 23, 11-16.
Mansell, E. R., Ziegler, C. L. and Bruning, E. C., 2010, Simulated electrification of a small thunderstorm with two-moment bulk microphysics. Journal of the Atmospheric Sciences, 67(1), 171-194.
Mansell, E. R. and Ziegler, C. L., 2013, Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. Journal of the Atmospheric Sciences, 70(7), 2032-2050.
Mansell, E. R., MacGorman, D. R., Ziegler, C. L. and Straka, J. M., 2005, Charge structure and lightning sensitivity in a simulated multicell thunderstorm. Journal of Geophysical Research: Atmospheres, 110(D12).
Marshall, T. C. and Rust, W. D., 1991, Electric field soundings through thunderstorms. Journal of Geophysical Research: Atmospheres, 96 (D12), 22297-22306.
Marshall, T. C., McCarthy, M. P. and Rust, W. D., 1995, Electric field magnitudes and lightning initiation in thunderstorms. Journal of Geophysical Research: Atmospheres, 100(D4), 7097-7103.
Mason, B. L. and Dash, J. G., 2000, Charge and mass transfer in ice‐ice collisions: Experimental observations of a mechanism in thunderstorm electrification. Journal of Geophysical Research: Atmospheres, 105(D8), 10185-10192.
Mellor, G. L. and Yamada, T., 1982, Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851-875.
Miller, K., Gadian, A., Saunders, C., Latham, J. and Christian, H., 2001, Modelling and observations of thundercloud electrification and lightning. Atmospheric Research, 58(2), 89-115.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682.
Petersen, W. A. and Rutledge, S. A., 1998, On the relationship between cloud‐to‐ground lightning and convective rainfall. Journal of Geophysical Research: Atmospheres, 103(D12), 14025-14040.
Price, C. and Rind, D., 1992, A simple lightning parameterization for calculating global lightning distributions. Journal of Geophysical Research: Atmospheres, 97(D9), 9919-9933.
Saunders, C. P. R., Bax‐Norman, H., Emersic, C., Avila, E. E. and Castellano, N. E., 2006, Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quarterly Journal of the Royal Meteorological Society, 132(621), 2653-2673.
Saunders, C. P. R., Keith, W. D. and Mitzeva, R. P., 1991, The effect of liquid water on thunderstorm charging. Journal of Geophysical Research: Atmospheres, 96(D6), 11007-11017.
Thompson, G., Rasmussen, R. M. and Manning, K., 2004, Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather Review, 132(2), 519-542.
URL1: http:// weather. uwyo. edu/ upperair/ sounding. html
Wang, F., 2014, The comparison and the analysis of the simulation results of two thunderstorm cells and a non-thunderstorm cell.
Wiens, K. C., Rutledge, S. A. and Tessendorf, S. A., 2005, The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. Journal of the atmospheric sciences, 62(12), 4151-4177.
Yair, Y., Lynn, B., Price, C., Kotroni, V., Lagouvardos, K., Morin, E., Mugnai, A. and Llasat, M. D. C., 2010, Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research: Atmospheres, 115(D4).