اصلاح مدل حائل‌های ویژه برای مدل‌سازی گسلش با استفاده از توابع زمانی جدید حاصل از موقعیت ایستگاه‌های دریافت امواج لرزه‌ای

نویسندگان

1 دانشجوی دکتری، گروه مهندسی زلزله، دانشگاه تربیت‌ ‌مدرس، تهران، ایران

2 استاد، گروه مهندسی زلزله، دانشگاه تربیت‌ ‌مدرس، تهران، ایران

چکیده

ارتباط تنگاتنگ طراحی سازه‌ها در برابر زلزله با شناخت خصوصیات لرزه‌ای محل ساختگاه و برآورد زلزله طراحی در ساختگاه مورد نظر، دانش مهندسی را بر آن داشته تا گام در عرصه شناخت زلزله و عوامل ایجاد کننده آن گذارد و دانش لرزه‌شناسی را با دیدگاه‌ها و نیازهای مهندسی همگام سازد. بی‌شک رسیدن به پیش‌بینی قابل‌اطمینان از حرکات زمین، ناشی از وقوع زلزله در یک ساختگاه مشخص، بدون داشتن شناخت صحیح از سازوکار تولید امواج لرزه‌ای، عوامل ساختاری اثرگذار بر این امواج در مسیر انتشار و شناخت شرایط فیزیکی و ویژگی‌های ساختاری محل ساخته‌شدن سازه‌ها میسر نخواهد بود. مدل حائل‌های ویژه که از مشهورترین مدل‌های شبیه­سازی زلزله است، گسل را به‌عنوان مجموعه‌ای از ترک‌های دایره‌ای در نظر می­گیرد. گسیختگی به‌صورت افت تنش‌های موضعی در این ترک‌ها فرض می‌شود و توقف‌ها و شروع‌های مکرر گسیختگی، عامل اصلی تولید امواج فرکانس بالا در این مدل است. استفاده از دوایر یکسان و نیز استفاده از توابع چگالی احتمال با توزیع یکنواخت که به‌منظور ساده­سازی­های اولیه در مدل اولیه استفاده‌ شده است، با خاصیت ذاتی زلزله مبنی بر تصادفی بودن این رخداد مغایرت دارد. از این‌رو، در این مطالعه سعی شده با پیشنهاد روش جدید استخراج توابع چگالی احتمال رسید امواج لرزه‌ای، توابع زمانی متناسب با موقعیت هر ایستگاه تولید شود. روند به دست آمدن توابع چگالی احتمال یاد شده مبتنی بر هندسه گسل و نیز موقعیت مکانی ایستگاه‌های گیرنده امواج می‌باشد که باعث می‌شود طیف‌های چشمه به‌دست‌آمده از شبیه‌سازی به واقعیت نزدیک‌تر شوند. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modification of specific barrier model for faulting modeling by using of new time functions based on site position and fault geometry

نویسندگان [English]

  • Mohammad Hadi Rezaei 1
  • Naser Khaji 2
1 Ph.D. Student, Department of Earthquake Engineering, Tarbiat Modares University, Tehran, Iran
2 Professor, Department of Earthquake Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

A reliable physical modeling of strong ground motion is required to examine the three crucial seismic parameters: seismic source specifications, wave propagation path and seismic site effects, which are all very important in seismic source simulation. Among various seismic source specifications, a more physically based realistic source model is the specific barrier model (SBM). The SBM is specifically more suitable for regions with poor seismological data bank and/or ground motions from large earthquakes with large recurrence intervals. In order to simulate seismic ground motions from a specific earthquake source model in an efficient way, the stochastic modeling method has been widely used. An essential part of the seismological model used in this method is the quantitative description of the far-field spectrum of seismic waves emitted from the seismic source. Since shear wave is one of the main factors of earthquake damages, the application of stochastic approach of the SBM is focused for on the far-field shearwave spectrum, in which two corner frequencies of the observed earthquake are represented. The ‘two-corner-frequency’ shows two considerable length-scales of an earthquake source: a length-scale that quantifies the overall size of the fault that ruptures (e.g., the length of a strike-slip fault) and another length-scale that measures the size of the subevents. Associated with these length-scales are two corresponding time scales: (1) the overall duration of rupture, and (2) the rise time. The SBM has a few main source parameters which have been calibrated by the parameters of earthquakes of different tectonic regions.
The SBM may be considered as a general idealization of the faulting process of an earthquake. For example, a uniform probability density function (PDF) of ‘arrival times’ is assumed in the SBM. In this paper, the effects of various PDFs of arrival times on the far-field source spectrum of the SBM are studied. For this purpose, direct simulations of ground motion records for an earthquake source, which have fractally-distributed subevent sizes, is used. So, in this research, a new non-uniform more realistic PDF of arrival times for seismic waves corresponding to the fault’s geometry is derived to reach desirable time functions. To this end, the appropriate PDF of arrival time is simply computed by making various zones on the fault, based on their distance from a given receiver on the ground surface. Therefore, a large number of points on the ground surface is chosen as receiver positions, for which the PDFs of arrival time are obtained. To divide the fault to various zones with the same distance from a given receiver, several spheres of the various radius are drawn, whose centers are located on the mentioned receivers. Consequently, a group of different curves is produced by the intersection of different spheres and the fault plane. All points in the region between the semi-parallel adjacent curves are considered to have the same distance from the receiver (the center of various spheres). This means that all points surrounded by two adjacent curves have equal chance to get to the receiver position. As a result, for creating the PDF of the arrival time of seismic waves, the chance of arriving seismic wave in specific time window should be determined, based on the above mentioned simple assumption. By changing distance parameter to time parameter, the PDF of the arrival time of seismic waves may be easily obtained. Afterwards, by using the proposed time functions, the effect of site position to the fault on source spectra, as well as the effect of distance of site to the fault on time functions, are investigated.

کلیدواژه‌ها [English]

  • Faulting
  • Kinematic models of earthquake
  • specific barrier model
  • source spectra
  • time function
Aki, K., 1967, Scaling law of seismic spectrum. Journal of Geophysical Research, 72, 1217–1231.

Aki, K. and Richards, P. G., 1980, Quantitative Seismology: Theory and Methods, Ellis, J., Ed., San Francisco: University Science Books.

Cork, T. G., Kim, J. H., Mavroeidis, G. P., Kim, J. K., Halldorson, B. and Papageorgiou, A. S., 2016, Effects of tectonic regime and soil conditions on the pulse period of near-fault ground motions. Soil Dynamics and Earthquake Engineering, 80, 102–118.

Govoni, A., Bragato, P. L. and Bressan, G., 1996, Coda Qc evaluation using local seismic events in the Friuli area. Atti del XV Convegno Annuale del Gruppo Nazionale di Geofisica della Terra Solida, Roma: 11-13.

Halldorsson, B. and Papageorgiou, A. S., 2005, Calibration of the specific barrier model to earthquakes of different tectonic regions. Bulletin of the Seismological Society of America, 95, 1276–1300.

Halldorsson, B. and Papageorgiou, A. S., 2012, Variations of the specific barrier model—part I: effect of subevent size distributions. Bulletin of Earthquake Engineering, 10, 1299–1319.

Haskell, N. A., 1953, The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43, 17-34.

Papageorgiou, A. S. and Aki, K., 1983a, A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Part I. Description of the model. Bulletin of the Seismological Society of America, 73, 693–722.

Papageorgiou, A. S. and Aki, K., 1983b, A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Part II. Applications of the model. Bulletin of the Seismological Society of America, 73, 953–978.

Papageorgiou, A. S., 1988, On two characteristic frequencies of acceleration spectra: patch corner frequency and fmax. Bulletin of the Seismological Society of America, 78, 509–529.

Papageorgiou, A. S., 2003, The barrier model and strong ground motion. Pure and Applied Geophysics, 160, 603–634.

Soghrat, M. R., Khaji, N. and Zafarani, H., 2012, Simulation of strong ground motion in northern Iran using the specific barrier model. Geophysical Journal International, 188, 645–679.

Thomson, W. T., 1950, Transmission of elastic waves through a stratified solid medium. Journal of applied Physics, 21, 89-93.

Zafarani, H., Mousavi, M., Noorzad, A. and Ansari, A., 2008, Calibration of the specific barrier model to Iranian plateau earthquakes and development of physically based attenuation relationships for Iran. Soil Dynamics and Earthquake Engineering, 28, 550–576.