شبیه‌سازی تولید، انتشار و بالاروی سونامی در منطقه مکران غربی، قسمت دوم: شبیه‌سازی انتشار و بالاروی

نویسندگان

1 دانشجوی دکتری، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران

2 دانشیار، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران

3 استادیار، پژوهشکده علوم زمین، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

باتوجه به ابهاماتی که در مورد خطرپذیری و پتانسیل خطر وقوع سونامی در سواحل جنوبی ایران وجود دارد، برای درک بهتر خطر سونامی و آمادگی در مقابله با وقوع آن به‌خصوص برای منطقه مکران غربی مدل‌سازی سونامی امری ضروری و لازم می‌باشد. هدف این مطالعه شبیه‌سازی عددی فازهای انتشار امواج سونامی در دریای عمان و شمال اقیانوس هند و بالاروی آن به هنگام رسیدن به سواحل مکران غربی در ایران می‌باشد. در این مطالعه، مدل‌سازی هیدرودینامیکی برای شبیه‌سازی انتشار سونامی در دریای عمان و شمال اقیانوس هند و بالاروی و گسترش سونامی در سواحل جنوب‌شرق ایران مورد استفاده قرار گرفت. در این مطالعه به‌منظور شبیه‌سازی انتشار و بالاروی سونامی از یک شبکه تودرتو استفاده شد. مدل‌سازی بالاروی سونامی در منطقه مکران غربی به‌ترتیب به غرب، میانه و شرق سواحل مکران در ایران تقسیم شد و برای هر منطقه به‌صورت جداگانه مدل‌سازی عددی بالاروی و سیل سونامی انجام شد. چگونگی گسترش و انتشار امواج سونامی، بیشینه ارتفاع موج، بالاروی و سیل امواج و سری زمانی سونامی در نقاطی خاص از جمله نتایج به‌دست آمده از این مطالعه می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of tsunami generation, propagation and run-up in the western Makran, Part 2: Simulation of the propagation and run-up

نویسندگان [English]

  • Amin Rashidi 1
  • Zaher Hossein Shomali 2
  • Nasser Keshavarz Farajkhah 3
1 Ph.D. Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
2 Associate Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran
3 Assistant Professor, Geoscience Division, Research Institute of Petroleum Industry (RIPI), Tehran , Iran
چکیده [English]

Tsunami numerical modeling is a mathematical description of tsunami life cycle circle including generation, propagation and run-up. Numerical simulation is a powerful tool to understand the impacts of past and future events. It is critical to use the results of tsunami simulation such as tsunami waves propagation patterns, time series, amplitudes and run-up along coastlines to mitigate tsunami hazard of possible future events. Tsunami waves propagate with a velocity up to 700 to 950 km/h in the ocean without losing a lot of energy. As they reach shallow waters, their amplitude grows larger in the wave shoaling process. Nonlinear shallow water equations are often used to model tsunami wave propagation and run-up.
The aim of this study is simulation of tsunami wave propagation and run-up in the western Makran for a tsunamigenic scenario capable of generating a Mw 8.7 magnitude. The initial condition to of model the tsunami propagation is computed using the Okada's algorithm. The COMCOT hydrodynamic model is used for the numerical tsunami simulation. The COMCOT is capable of solving non-linear shallow water equations in both Spherical and Cartesian coordinates using explicit staggered leap-frog finite difference schemes and a nested grid configuration.
Tsunami propagation is highly influenced by the bathymetry. A three level nested grid system with different resolutions is used for tsunami simulation in this study. Configuring a nested grid system in tsunami modeling is necessary to compute tsunami run-up and inundation on dry land. The simulation is then performed for a total run time of 90 minutes with a time step of 0.5 min for the parent grid and 0.0625 min for the finest grid. Numerical modeling of tsunami run-up and inundation is performed for the western (C1), central (C2) and eastern (C3) parts of the Makran coastline in the south of Iran.
The trapping of tsunami waves inside the Gulf of Oman causes more impacts on the coastlines of Iran and Oman in comparison to the other areas. To investigate the time histories of tsunami waves after the generation by the tsunmigenic scenario, we put 18 virtual gauges near and along the southeastern coastline of Iran. Generally, it takes about 20 minutes for maximum tsunami wave amplitudes to be observed at the southeastern coastlines of Iran. The maximum tsunami wave heights computed for the gauges near Jask and Chabahar are 2/8 and 3/3 m respectively. The entire southeastern coastline of Iran is impacted by such tsunami waves. The maximum computed tsunami wave height along the southeastern coastline of Iran is 11m.
The maximum tsunami wave field exhibits a significant local hazard field inside the Gulf of Oman posed to the shores of Iran and Oman. The maximum tsunami amplitude reaches up to 11 m and 6 m inside the Gulf of Oman the Arabian Sea Basins, respectively. The results of run-up modeling show that the maximum computed run-up for the C1, C2 and C3 areas are 10, 17 and 19 m. The maximum tsunami inundation distance for those areas are 6, 6 and 4 km, respectively. The considerable values of inundation distance are due to low elevation topography of the affected coasts. Computing the tsunami inundation distance can be used in choosing evacuation lines during the possible future tsunamis and finding safer locations along the coastal areas. Accurate tsunami simulations are required to develop a tsunami early warning system and estimate the tsunami inundation on dry land. To perform more accurate simulations, high resolution local bathymetric/topographic maps are required, especially for the major ports in southeastern Iran.

کلیدواژه‌ها [English]

  • Tsunami
  • western Makran
  • Iran
  • Numerical simulation
  • tsunami propagation and run-up
رشیدی، ا.، شمالی، ظ. ح. و کشاورز فرج‌خواه، ن.، 1397، شبیه‌سازی تولید، انتشار و بالاروی سونامی در منطقه مکران غربی، قسمت اول: شبیه‌سازی تولید، مجله فیزیک زمین و فضا، 44 (3)، 495- 508.
Barkan, R. and Brink, U. S., 2010, Tsunami simulations of the 1867 Virgin Islands earthquake: Constraints on epicenter location and fault parameters, Bull. seism. Soc. Am., 100, 995-1009.
Cho, Y. S., 1995, Numerical Simulations of Tsunami Propagation and Run-Up, PhD thesis, Cornell University.
El-Hussain, I., Omira, R., Deif, A., Al-Habsi, Z., Al-Rawas, G., Mohamad, A., Al-Jabri, K. and Baptista, M. A., 2016, Probabilistic tsunami hazard assessment along Oman coast from submarine earthquakes in the Makran subduction zone, Arab J Geosci., 9(668), 3-14.
Guo, A., Xiao, S. and Li, H., 2015, Time–Space Decoupled Explicit Method for Fast Numerical Simulation of Tsunami Propagation, Pure Appl. Geophys., 172, 569-587.
Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., Yalciner, A. C., Mokhtari, M. and Esmaeily, A., 2008, Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling: Ocean Eng., 35(8-9), 774-786.
Heidarzadeh, M., Pirooz, M. D. and Zaker, N. H., 2009, Modeling the nearfield effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng., 36(5), 368–376.
Heidarzadeh M. and Satake, K., 2014, New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data, Pure Appl. Geophys., 172, nos. 3/4, 621–640.
Hoffmann, G., Rupprechter, N., Albalushi, N., Grutzner, C. and Reicherter, K., 2013, The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (northern Indian Ocean)-A review: Zeitschrift für Geomorphologie, 57, 257–277.
Huang Z. H., Wu, T. R., Tan, S. K., Megawati, K., Shaw, F., Liu, X. and Pan, T. C., 2009, Tsunami hazard from the subduction Megathrust of the South China Sea: Part II. Hydrodynamic modeling and possible impact on Singapore, J Asian Earth Sci, 36, 93–97.
Imamura, F., Yalciner, A. C., and Ozyurt, G., 1995, Tsunami modelling manual, Technical Report, Disaster Control Research Center, Tohoku University., Sendai, Japan.
Kanayama, H. and Dan, H., 2013, A tsunami simulation of Hakata Bay using the viscous shallow-water equations, Japan J. Indust. Appl. Math., 30, 605-624.
Koh, H. L., The, S. Y., Liu, P. L. F., Ismail, A. I. M. and Lee, H. L., 2009, Simulation of Andaman 2004 tsunami for assessing impact on Malaysia, J Asian Earth Sci, 36, 74–83.
Liu, P. L. F., Cho, Y. S., Yoon, S. B. and Seo, S. N., 1994, Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii, in: El-Sabh, M. I. (Ed.), Recent Development in Tsunami Research, Kluwer Academic, Dordrecht, 99–115.
Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U. and Synolakis, C. E., 1995, Runup of solitary waves on a circular island, Journal of Fluid Mechanics, 302, 259–285.
Liu, P. L. F., Woo, S. B. and Cho, Y. S., 1998, Computer Programs for Tsunami Propagation and Inundation, Technical report, Cornell University.
Mercado, A. and McCann, W., 1998, Numerical simulation of the 1918 Puerto Rico tsunami, Nat Hazards, 18, 57-76.
Neetu, S., Suresh, I., Shankar, R., Nagarajan, B., Sharma, R., Shenoi, S. S. C., Unnikrishnan, A. S. and Sundar, D., 2011, Trapped waves of the 27 November 1945 Makran tsunami: Observations and numerical modeling, Nat. Hazards, 59, 1609-1618.
Okada, Y., 1985, Surface deformatipon due to shear and tensile faults in a half-space, Bull. seism. Soc. Am., 75, 1135-1154.
Okal, E. A. and Synolakis, C. E., 2008, Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean, Geophys. J. Int., 172, 995-1015.
Rashidi, A., Shomali, Z. H. and Keshavarz Farajkhah, N., 2018, Tsunami simulations in the western Makran using hypothetical heterogeneous source models from World’s great earthquakes, Pure Appl. Geophys., 175(4), 1325-1340.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J. and Zemsky, R., 2009, Global Multi-Resolution Topography synthesis, Geochem. Geophys. Geosyst., 10, Q03014.
Smith, G. L., McNeill, L. C., Wang, K., He, J. and Henstock, T. J., 2013, Thermal structure and megathrust seismogenic potential of the Makran subduction zone, J. Geophys. Res., 40, 8, 1528-1533.
Titov, V. and Gonzalez, F., 1997, Implementation and testing of the method of splitting tsunami (MOST) model, Technical Report, Pacific Marine Environmental Laboratory.
Sorensen, R. M., 2006, Basic Coastal Engineering,  Ed., 3rd ed, Springer Verlag New York Inc.
Synolakis, C. E., 2003, Tsunami and Seiche, in Earthquake Engineering Handbook, in: Chen W. F. and Scawthorn, C. (Eds.), CRC Press, Chapter 9, 1-90.
Wang, K. and Liu, P. L. F., 2005, A numerical investigation of boumerdes-zemmouri (Algeria) earthquake and tsunami. CMES, 10(2), 171–184.
Wang, K. and Liu, P. L. F., 2006, An analysis of 2004 Sumatra Earthquake fault plane mechanisms and Indian Ocean tsunami, J. Hydraulic Res., 44(2), 147–154.
Wang, X. and Liu, P. L. F., 2007, Numerical simulations of the 2004 Indian Ocean tsunamis: coastal effects, Journal of Earthquake & Tsunami, 1(3), 273-297.
Wijetunge, J. J., 2009, Field measurements and numerical simulations of the 2004 tsunami impact on the south coast of Sri Lanka, Ocean Engineering, 36, 960–973.
Witter, R. C., Zhang, Y. J. and Wang, K., 2013, Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Journal of Geosphere, 9(6), 1–21.