# شناسایی ضعف در میانگین‌گیری برداری داده‌های مغناطیدگی و روشی برای برطرف کردن این ضعف

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، پژوهشکده مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، تهران، ایران

چکیده

در جوامع معمولی آماری، اغلب وضعیت توزیع عادی یا نرمال حاکم است و لذا در آنها استفاده از تابع چگالی احتمال گوسی یا نرمال و استفاده از میانگین‌گیری حسابی یا معمولی کار صحیحی می‌باشد. اما اگر جامعه آماری از تعدادی جهت دلخواه فضایی تشکیل شده باشد، وضعیت توزیع عادی یا نرمال حاکم نمی‌باشد. در این شرایط از تابع چگالی احتمال فیشر ومیانگین‌گیری برداری می‌توان بهره برد. یکی از جوامع آماری جهتی، جامعه آماری جهت­های مختلف مغناطیدگی سنگ‌ها است. در این مقاله پس از یک مقدمه، برای درک بهتر تفاوت جامعه آماری معمولی و جامعه آماری جهتی، هم پراکندگی نرمال و هم پراکندگی فیشر (که برای جامعه جهتی استفاده می­شود) مورد بحث قرار می­گیرد. در ادامه الگوریتم محاسبه جهت میانگین مجموعه بردارها مطرح می­شود. سپس به یک برنامه رایانه­ای دارای توانایی میانگین‌گیری برداری که در جریان همین پژوهش تولید شده، اشاره شده است و بعد میانگین‌گیری برداری و حسابی با استفاده از داده­های مغناطیدگی مقایسه شده­اند. در این پژوهش معلوم شد که یک ضعف در میانگین‌گیری برداری وجود دارد و آن اینکه در بعضی شرایط جواب میانگین‌گیری برداری یکتا نمی‌باشد. راه‌حل ارائه شده در این پژوهش برای رفع این ضعف این است که در کنار میانگین‌گیری برداری، مناسب است که میانگین‌گیری معمولی یا حسابی هم صورت بگیرد تا در مواردی که جواب میانگین‌گیری برداری چند جهت متفاوت است، بتوانیم میانگین برداری صحیح را تشخیص دهیم.

کلیدواژه‌ها 20.1001.1.2538371.1398.45.2.3.2

موضوعات

عنوان مقاله [English]

### Detection of the weakness of the vector averaging of magnetization data and a method for treatment of the weakness

نویسنده [English]

Assistant Professor, Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Tehran, Iran
چکیده [English]

In statistical common population, common or normal distribution is often governed and so that using Gaussian or normal probability density function and arithmetic averaging is appropriate. But if the statistical population has been formed from a number of spatial arbitrary directions, then common or normal distribution is not governed. In this condition Fisher probability density function and vector averaging can be used (Fisher is the name of the scientist who proposed the mentioned density function for the first time). In this function, each direction is shown as a point on a sphere with unit radius. The mentioned function shows the probability of having a particular direction in unit angular area of a particular area that has a definite central direction. This central direction shows the angular difference with the real average direction. In Fisher function, the distribution of the azimuth angles around the real vector average direction is symmetrical. The azimuth and the declination angles are the same and being symmetrical around the their distribution of the real average direction is logical. One of the statistical directional populations is the statistical population of different directions of the magnetization of rocks (Each magnetization direction is specified by two angles. First the angle between the magnetization direction and the surface of the horizon (inclination angle) and second the angle between the magnetization direction projection on the surface of the horizon and the geographic north direction (declination angle)). In this paper after an introduction, both normal and Fisher distributions (the latter is used for directional population) are discussed for better understanding of the difference between normal and directional statistical populations. Then the algorithm for calculating the vector averaging is presented. After that a software having vector averaging ability that is produced in this research is presented and then the vector and arithmetic averages are compared for magnetization data. During this research, it is clear that there is a weakness in the vector averaging and that weakness is that in some conditions the result of the vector averaging is not unique (this non uniqueness is because of the functions used in vector averaging algorithm). For example for calculating the declination angle, the function arc-tangent is used and we know that the result of this function is not unique. For example arctan (0.5637) is equal to both 29.41 and -150.9 degrees). The proposed method for the treatment of this weakness in this research is that, it would be proper to perform an arithmetic averaging beside the vector averaging and by which in the cases of having non unique results for vector averaging, the true result can be detectable (The result of the arithmetic averaging is unique) Between different results of the vector averaging, that result is true which is more similar to the arithmetic averaging. For example if there is a directional population which their declination angles are between -170 to -140 degrees and their arithmetic average is -150.67 degrees and the results of their vector averaging are 29.41 and -150.59 degrees, then the correct vector average is -150.59.

کلیدواژه‌ها [English]

• vector averaging
• arithmetic averaging
• directions of magnetizations

#### مراجع

حکمتیان، م.ا.، 1395، طراحی و تولید نرم­افزار با توانایی تخمین جهت مغناطیدگی بازماند با استفاده از روش‌های شبه‌گرانی و سیگنال تحلیلی، گزارش پژوهشی درون پژوهشگاهی، پژوهشی مواد اولیه و فناوری سوخت ، پژوهشکده مواد و سوخت هسته­ای ، پژوهشگاه علوم وفنون هسته­ای.
حکمتیان، م.ا.، 1397، بیان تحلیلی آمار پالئومغناطیسی و تولید یک برنامه رایانه­ای کوچک با توان میانگین‌گیری برداری، گزارش علمی و فنی، گروه پژوهشی مواد اولیه و فناوری سوخت ، پژوهشکده مواد و سوخت هسته­ای، پژوهشگاه علوم وفنون هسته‌ای.
Beiki, M., Clark, D. A., Austin, J. and Foss, C., 2012, Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data, Geophysics, 77(6), J23-J37.
Butler, R. F., 2004, Paleomagnetism: Magnetic domains to geologic terranes, Electronic edition, University of Portland, Portland, Oregon.
Bott, M. H. P., Smith, R. A. and Stacey, R. A., 1966, Estimation of the direction of magnetization of a body causing a magnetic anomaly using a pseudo-gravity transformation, Geophysics, 31, 803–811. doi:10.1190/1.1439812
Clark, D. A., 2012, New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength, Exploration Geophysics, 43, 267–282. doi:10.1071/ EG12020
Clark, D. A., 2013, New approaches to dealing with remanence: magnetic moment analysis using tensor invariants and remote determination of in situ magnetisation using a static tensor gradiometer, ASEG-PESA Conference, Melbourne, Extended Abstract, 1–7.
Clark, D. A., 2014, Methods for determining remanent and total magnetisationsof magnetic sources – a review,Exploration Geophysics, 45, 271–304. doi:10.1071/ EG14013.
Dannemiller, N. and Li, Y., 2006, A new method for determination of magnetization direction, Geophysics, 71, L69–L73. doi:10.1190/ 1.2356116.
Fedi, M., Florio, G. and Rapolla, A., 1994, A method to estimate the total magnetization direction from a distortion analysis of magnetic anomalies, Geophysical Prospecting, 42, 261–274. doi:10.1111/j.1365-2478.1994.tb00209.x.
Fisher, R. A., 1935, Design of Experiments. Oliver and Boyd, Edinburgh.
Gerovska, D., Araúzo-Bravo, M. J. and Stavrev, P., 2009, Estimating the magnetization direction of sources from southeast Bulgaria through correlation between reduced-to-the- pole and total magnitude Anomalies, Geophysical Prospecting, 57, 491–505. doi:10.1111/j.1365-2478.2008.00761.x
Hekmatian, M. E., 2019, Estimating the direction of source magnetisation through comparison of pseudogravity and total gradient, Exploration Geophysics, accepted in 2019.
McKenzie, B., Foss, C. and Hillan, D., 2012, An improved search for magnetization direction, 22nd ASEG Geophysical Conference, Extended Abstracts, 1–4.
Pilkington, M. and Beiki, M., 2013, Mitigating remanent magnetization effects in magnetic data using the normalized source strength, Geophysics, 78(3), J25–J32.
Roest, W. R. and Pilkington, M., 1993, Identifying remanent magnetization effects in magnetic data, Geophysics, 58, 653-659. doi:10.1190/1.1443449.
Schnetzler, C. C. and Taylor, P. T., 1984, Evaluation of an observational method for estimation of remanent magnetization, Geophysics, 49, 282–290. doi:10.1190/ 1.1441660.
Stavrev, P. and Gerovska, D., 2000, Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity, Geophysical Prospecting, 48, 317–340. doi:10.1046/j.1365-2478.2000.00188.x.
Zhang, H., Ravat, D., Marangoni, Y. R., Chen, G. and Hu, X., 2018, Improved total magnetization direction determination by correlation of the normalized source strength derivative and the reduced-to-pole fields, Geophysics, 83(6), J75-J85. https://doi.org/ 10.1190/geo2017-0178.1.