بررسی پیچیدگی توزیع زمانی لرزه‌خیزی در گستره زاگرس با استفاده از آنالیز فرکتالی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

2 استادیار، دانشکده علوم زمین، دانشگاه دامغان، دامغان، ایران

چکیده

در این مطالعه سعی شده است تا میزان پیچیدگی توزیع زمانی لرزه‌خیزی در پهنه زمین‌ساختی زاگرس مورد بررسی و ارزیابی قرار گیرد. برای این منظور از راه‌کار تجزیه و تحلیل فرکتالی مبتنی بر تبدیل موجک استفاده شده است. در این خصوص سری‌های زمانی لرزه‌خیزی برای تمامی زیرپهنه‌های گستره زاگرس تهیه شده و سپس مورد تجزیه و تحلیل فرکتالی قرار گرفته‌اند. نتایج به‌دست آمده نشان‌دهنده ماهیت چندفرکتالی و مستقل از مقیاس توزیع زمانی لرزه‌خیزی در تمامی قسمت‌های پهنه مورد مطالعه است. با این وجود ویژگی‌های فرکتالی زیرپهنه‌های مختلف یکسان نبوده و هر یک از آنها دارای سرشتی متفاوت هستند. در نواحی ایذه و زاگرس مرتفع که دارای میزان تمرکز تنش به نسبت بالایی هستند، توزیع زمانی لرزه‌خیزی دارای ماهیتی پادهمبسته و تا حدی ساده‌ است. این در حالی است که در زیرپهنه‌های لرستان، فروبار دزفول و کمان فارس، توزیع مذکور به نسبت پیچیده‌‌ بوده و ماهیتی نسبتاً همبسته و گاهاً تصادفی دارد. همچنین یافته‌های این تحقیق نشان می‌دهد که در گستره زاگرس لرزه‌خیزی مستقل نسبت به لرزه‌خیزی وابسته دارای توزیع زمانی ناهمگن‌تری است. هر چند که این ناهمگنی در بخش‌های مختلف پهنه مذکور یکسان نبوده و متغییر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Complexity investigation of seismicity temporal distribution in the Zagros region by using fractal analysis

نویسندگان [English]

  • Sahereh Golriz 1
  • Amir Pirooz Kolahi-Azar 2
1 M.Sc. Graduated, School of Earth Sciences, Damghan University, Damghan, Iran
2 Assistant Professor, School of Earth Sciences, Damghan University, Damghan, Iran
چکیده [English]

In this research it is tried to examine the fractal complexity of seismicity temporal dispersion in the Zagros Mountain range. The Wavelet Transform Modoulos Maxima (WTMM) as an innovative strang attractor formalism has been utilized for the multifractal investigation. Earthquakes that occurred from December 2003 to May 2016 have been collected from the master catalog of the International Institute of Earthquake Engineering and Seismology (IIEES). As all events in the master list are reported based on the local magnitude (ML), the achieved catalog is already homogeneous. ML is saturated for the earthquakes with magnitude greater than 5.5, so they are converted to the moment magnitude (MW) using some empirical relations. For a reliable and comprehensive seismicity examination, the Gutenberg–Richter analysis is performed over the cumulative distribution of events, and the minimum magnitude of completeness (MC) has been obtained. For MC calculation, the maximum curvature method is used and an overall Mc=3.1 is computed for the attained earthquake catalog. To complete the catalog, all events with MW<MC have been removed from the earthquakes list. As the occurrence time is the most reliable seismicity parameter, the time-series are prepared as interevent times between the consecutive earthquakes for the different subzones of the Zagros region. The WTMM technique has been applied to each of the time-series and their fractal characteristics are gaind from the attributes of the related scaling and singularity spectrums. The obtained results revealed that the seismicity is scale invariant; however, its multifractal nature is not constant. There are some differences among the fractal aspects of seismicity temporal changes in the different portions of the belt. Chronological distribution of earthquakes in the simply-folded belt and Dezful embayment are remarkably more complex than the other portions of the Zagros Mountain range. Dezful embayment as an indenter plays an important role on deformation style in the Zagros Mountain. It causes crust materials to escape from the frontal regions toward the Fars-Arc and Lorestan side-salients. Our findings indicate a relatively complex and heterogeneous temporal variation of earthquakes in the salients and Dezful indenter with respect to those in high-Zagros and Izeh frontal subzones. Abadan plain is the quietest subzone seismically and it shows the least amuont of temporal complexity. From the dependency point of view, the seismicity of high-Zagros, Izeh, and Abadan plain has an anticorrelate sharing. On the contrary, Fars-Arc and Lorestan salients have correlated seismic activities and in Dezful embayment the seismicity behaves in a random (stochastic) manner. These findings reveal that the seismicity offers relatively inconsistent configuration in regions with a high-stress concentration and in contrary, earthquakes work dependably in other calm areas. Generally, in the Zagros region independent (scattered) earthquakes are more heterogeneous with respect to the dependent (clustered) seismicity. In other words, the Zagros tectonic setting is such that the independent earthquakes have more intricate temporal spreading with respect to the affiliated temblors. The results of this study are in agreement with Kolahi-Azar and Golriz (2018) examination. In the mentioned work topography complexity has been measured for the different subzones of the Zagros region. Assuming the topography is affected by the superficial tectonic processes; they concluded shallow tectonic processes that act more intricately in Dezful embayment, Fars-Arc, and Lorestan side-salients. Similarly, our results show the more intricate temporal distribution of seismicity for the same regions. The fractal study of seismicity temporal distribution is a useful tool for the better understanding of the geodynamic conditions in a region. This approach reveals new seismotectonic aspects of the Zagros region which has not been addressed from this point of view.

کلیدواژه‌ها [English]

  • Wavelet transform
  • Singularity spectrum
  • Multifractal
  • Seismotectonics
  • independent seismicity
  • affiliated seismicity

آق‌آتابای، م.، 1393، الگوی توزیع زمانی زمین‌لرزه‌های جنوب خاور زاگرس، م. علوم زمین، 94، 254-245.

کلانه، س. و آق‌آتابای، م.، 1394، پهنه‌بندی فعالیت‌های لرزه‌ای کمربند چین‌خورده-رانده زاگرس با استفاده از پارامترهای فرکتالی، م. فیزیک زمین و فضا، (3)41، 375-363.

کلاهی‌آذر، ا.، 1392، بررسی تغییرات زمانی لرزه‌خیزی مبتنی بر آنالیز موجک، رساله دکتری، دانشگاه شیراز، شیراز-ایران.

گلریز، س.، 1395، تعیین ابعاد برخالی توپوگرافی سطحی و کاربرد آن در بررسی زمین‌ساختی ناحیه زاگرس، پایان‌نامه کارشناسی ارشد، دانشگاه دامغان، دامغان-ایران.

مطیعی، ه.، 1374، زمین‌شناسی نفت زاگرس، تهران، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1، 589 ص.

Aki, K., 1965, Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits, Bull. Earth Res. Inst., Univ. Tokyo, 43, 237-239.

Arneodo, A., Bacry, E. and Muzy, J., 1995, The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232-275.

Bacry, E., Muzy, J. and Arneodo, A., 1993, Singularity spectrum of fractal signals from wavelet analysis: exact results, J. Stat. Phys., 70, 635-674.

Berberian, M., 1995, Master blind thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics, Tectonophysics, 241, 193-224.

Boeing G., 2016, Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction, systems, 4, 37.

Caruso, F., Vinciguerra, S., Latora, V., Rapisarda, A. and Malone, S., 2006, Multifractal analysis of Mount St. Helens seismicity as a tool for identifying eruptive activity, fract., 14, 179-186.

Enescu, B., Ito, K. and Struzik, Z., 2006, Wavelet-based multiscale resolution analysis of real and simulated time-series of earthquakes, Geophys. J. Int., 164, 63-74.

Farge, M., 1992, Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., 24, 359-457.

Geilikman, M., Golubeva, T. and Pisarenko, V., 1990, Multi fractal patterns of seismicity, Earth Planet. Sci. Lett., 99, 127-132.

Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P., Mark, R., Mietus, J., Moody, G., Peng, C. and Stanley, H., 2000, PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals, Circulation, 101, 215-220.

Goltz, C., 1997, Fractal and chaotic properties of earthquakes, Springer Verlag, Berlin, Germany.

Harrar, K., Khider, M., 2014, Texture analysis using multifractal spectrum. Int. J. Model. Opt., 4(4), 336–341.

Hirabayashi, T., Ito, K. and Yoshi T., 1992, Multi-fractal analysis of earthquakes, Pure Appl. Geophys., 138, 591-610.

Jackson, J. and McKenzie, D., 1984, Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan, Geophis. J. Royal Astronomical Soc., 77, 185-264.

Jafard, S., 1997, Multifractal formalism for functions. Part 292 I: Results valid for all functions, SIAM J. Math. Anal., 28, 944-970.

Kagan, Y. and Jackson, D., 1991, Long-term earthquake clustering, Geophys. J. Int., 104, 117-133.

Kolahi-Azar, A. and Golriz, S., 2018, Multifractal topography: A tool to measure tectonic complexity in the Zagros Mountain Range, Math. Geosci., 50(4), 431-445.

Malekzade, Z., Bellier, O. and Abbasi, M., 2016, The effects of plate margin inhomogeneity on the deformation pattern within west-Central Zagros Fold-and-Thrust Belt, Tectonophysics, 693(B), 304-326.

Mandelbrot, B., 1989, Multi-fractal measures: especially for the geophysist, pure Appl. Geophys., 131, 5-42.

Maruyama, F., Kai, K. and Morimoto, H., 2011, Wavelet-based multifractal analysis of the El Niño/Southern Oscillation, the Indian Ocean dipole and the North Atlantic Oscillation, SOLA, 7, 65-68.

McAteer, R., Young, C., Ireland, J. and Gallagher, P., 2007, The bursty nature of solar flare X-ray emission, Astrophys. J., 662, 691-700.

Mousavi-Bafrouei, S.H., Mirzaei, N. and Shabani, E., 2014, A declustered earthquake catalog for the Iranian Plateau, Ann. Geophys., 57(6), S0653.

Muzy, J., Bacry, E. and Arneodo, A., 1991, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. E., 67, 3515-3518.

Ni, J. and Barazangi, M., 1986, Seismotectonics of Zagros continental collision zone and a comparison with the Himalayas, J. Geophys. Res., 91, 8205-8218.

Nowroozi, A., 1976, Seismotectonic provinces of Iran, Bull. Seismol. Soc. Am., 66, 1249-1276.

Sarkarinrjad, K., Mehdi Zadeh, R. and Webster, R., 2013, Two-dimensional spatial analysis of the seismic b-value and the Bouguer gravity anomaly in the southeastern part of the Zagros Fold-and-Thrust Belt, Iran: Tectonic implications, J. Asian Earth Sci., 62, 308-316.

Özger, M., 2011, Investigating the multifractal properties of significant wave height time series using a wavelet-based approach. J. Waterw. Port. C. Eng., 137, 34-42.

Sepehr, M. and Cosgrove, W., 2005, Role of Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran, Tectonics, 24(5), TC5005.

Smalley, R., Chatelain, J., Turcoote, D. and Prevot, R., 1987, A seismicity of the New Hebrides, Bull. Seism. Soc. Am., 77, 1368-1381.

Toledo, B., Chian, A., Rempel, E., Miranda, R., Munoz, P. and Valdivia, J., 2013, Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven tsunami of 27 February 2010 in Chile, Phys. Rev., E., 87, 22821-1 – 22821-11.

Torrence, C. and Compo G.P., 1998, A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79(1), 61-78.

Utsu, T., 1965, A method for determining the value of b in formula log N = a - bM showing the magnitudefrequency relation for earthquakes, Geophys. Bull. Hokkaido Univ., 13, 99-103.

Wiemer, S., 2001, A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 72, 373-382.

Xu, J., Chen, Y., Li, W., Ji, M. and Dong, S., 2009, The complex nonlinear system with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River, J. Geophys. Sci., 19, 25-35.

Zamani, A. and Agh-Atabai, M., 2009, Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using multifractal approach, J. Geodyn., 47, 271-279.

Zamani, A., Samiee, J. and Kirby, J., 2013, Estimating the coherence method, tectonophysics, 601, 139-147.

Zamani. A., Kolahiazar, A. and Safavi, A., 2014, Wavelet-Based Multifractal Analysis of Earthquakes Temporal Distribution in Mammoth Mountain Volcano, Mono County, Eastern California, Acta Geophysica, 62, 585-607.