آغازگری مدل بسیط فشارورد منطقه‌ای به روش مُد بهنجار

نویسندگان

1 هیئت علمی موسسه ژئوفیزیک

2 عضو هیات علمی پژوهشکده هواشناسی

چکیده

برای مدل بسیط فشارورد الگوریتم‌های آغازگری به روش مُد بهنجار از مرتبه‌های اول و دوم فرمول‌بندی می‌شود. الگوریتم‌های آغازگری روی مدلی منطقه‌ای با طرحواره‌ای اویلری که آنزتروفی پتانسیلی را پایسته نگاه می‌دارد، در تفکیک‌های فضایی متفاوت روی داده‌های واقعی‌تر از 500 هکتوپاسکال به کار بسته می‌شود. چنانچه میدان تاوایی پتانسیلی خطی شده q که در آغازگری مُد بهنجار دست نخورده می‌ماند، فقط با استفاده از میدان ارتفاع ژئوپتانسیلی اولیه Z ساخته و باد زمینگرد متناظر با Z برای شرایط مرزی در فرایند آغازگری استفاده شود، آغازگری حساسیت نامطلوبی به تفکیک فضایی نشان می‌دهد. اما اگر میدان q از روی توزیع میدان‌های Z و تاوایی نسبی ζ میدان باد اولیه تعیین و باد زمینگرد متناظر با q حاصل برای شرایط مرزی استفاده شود نتایج سازگاری در تفکیک‌های فضایی متفاوت به دست می‌آید. در بررسی کیفی نتایج آغازگری‌های مرتبه اول و دوم را به سختی می‌توان تمیز داد . اما بررسی کمی روی نُرم انحراف از توازن‌های مرتبه اول و دوم در ضمن انتگرالگیری‌های 48 ساعته نشان از برتری آغازگری مرتبه دوم به ویژه در 24 ساعت اول انتگرالگیری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Normal mode initialization of a regional barotropic primitive model

نویسندگان [English]

  • Ali Reza Mohebalhojeh 1
  • Mohammad Moradi 2
1 Institute of Geophysics, University of Tehran
2 Assistant Professor of Atmospheric Science and Meteorological Research Center(ASMERC)
چکیده [English]

Normal mode initialization algorithms of first and second order accuracy are formulated for a regional barotropic model. The initialization algorithms are implemented on the actual data of 500hPa level in different spatial resolutions using a potential enstrophy conserving Eulerian scheme due to Sadourney for time integration. If the linearized Potential vorticity , which is left unchanged during the normal mode initializations, is constructed based on the initial geopotential height Z only, and if the geostrophic wind associated with Z is used to define the boundary conditions needed to solve the modified Helmholtz equations involved, then the initialization algorithm will exhibit an undesirable sensitivity to spatial resolution. This sensitivity reflects different behavior of small and large scales as regards balance. But if  is constructed based on the distribution of both Z and relative vorticity  of the initial wind field, and if the geostrophic wind associated with the  thus constructed is used to define the boundary conditions, then consistent results at different spatial resolutions will be obtained. Qualitatively, the results of the first and second order algorithms are indistinguishable. By measuring the time variation of an Euclidean norm for the departure of actual states from their approximately balanced-state counterparts determined by the two initialization algorithms during 48 hours numerical integrations, the superiority of the second-order algorithm is demonstrated, particularly for the first 24 hours of integration.

کلیدواژه‌ها [English]

  • initialization
  • normal mode
  • balance
  • barotropic primitive
محب‌الحجه، ع. ر.، پارسایی، م. و قائمی، ه‍.، 1374، پیش‌بینی عددی وضع هوا با مدل بسیط فشارورد: گزارش طرح پژوهشی شماره 196/1/652 دانشگاه تهران.
محب‌الحجه، ع. ر. و مرادی، م.، 1381، تجربیاتی با مدل بسیط فشارورد و آغازگری آن: گزارش طرح پژوهشی. سازمان هواشناسی کشور.
Baer, F. and Tribbia, J., 1977, On the complete filtering of gravity modes through nonlinear initialization: Mon. Wea. Rev., 105, 1536-1539.
Daley. R., 1991, Atmospheric Data Analysis: Cambridge University Press, 457 pp.
Dritschel, D. G. and Mohebalhojeh, A. R., 2000, The contour-advective semi- Lagrangian algorithm: keeping the balance: in Proccedings of ECMWF Workshop on Developments in Numerical Methods
 for very High Resolution Global Models, Reading, UK, 5-7 June 2000, 119-136.
Haltiner, G. J. and Williams, R. T., 1980, Numerical Prediction and Dynamic Meteorology: 2nd Ed., John Wiley & Sons, 477pp.
Hoskins, B. J., McIntyre, M. E. and Robertson, A. W., 1985, On the use and significance of isentropic potential-vorticity maps: Q. J. Roy. Meteorol. Soc., 111, 877-946.
Juvanon du Vachat, R., 1988, Non-normal-mode initialization: Formulation and application to the inclusion of the β terms in the linearization: Mon. Wea. Rev., 116, 2013-2024.
Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University press, 364 pp.
Leith, C. E., 1980, Nonlinear normal mode initialization and quasi-geostrophic theory: J. Atmos. Sci., 37, 958-968.
Lorenz, E. N., 1980, Attractor sets and quasi- geostrophic equilibrium: J. Atmos. Sci., 37, 1685-1699.
Lynch, P. and Huang, X. Y., 1992, Initialization of the HIRLAM model using a digital filter: Mon. Wea. Rev., 120, 1019-1034.
McIntyre, M. E. and Norton, W. A., 2000, Potential vorticity inversion on a hemisphere: J. Atmos. Sci., 57, 1214-1235.
Mohebalhojeh, A. R. and Dritschel, D. G., 2000, On the representation of gravity waves in numerical models of the shallow-water equations: Q. J. Roy. Meteorol. Soc., 126, 669-688.
Mohebalhojeh, A. R. and Dritschel, D. G., 2001, Hierarchies of balance conditions for f-plane shallow-water equations: J. Atmos. Sci., 58, 2411-2426.
Sadourny, R., 1975, The dynamics of finite-difference models of the shallow-water equations: J. Atmos. Sci., 32, 680-689.
Temperton, C., 1988, Implicit normal mode initializa-tion: Mon. Wea. Rev., 116, 1013-1031.
Warn, T., 1997, Nonlinear balance and quasi-geostrophic sets: Atmos.-Ocean, 35, 135-145.