کارایی مدل HadGEM2-ES در ارزیابی نابهنجاری فصلی دمای ایران تحت سناریوهای واداشت تابشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

3 استادیار، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

4 دانشجوی کارشناسی ارشد، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

پدیده گرمایش جهانی در سال­های اخیر مشکلات بسیاری را برای سامانه زمین به‌همراه داشته است و ایران به‌دلیل اینکه کشوری خشک است، مطالعه شرایط آینده می­تواند برای برنامه­های مدیریتی مفید باشد. هدف این پژوهش کارایی مدل HadGEM2-ES از سری مدل­های CMIP5 مبتنی بر روش ریزگردانی دینامیکی CORDEX و وردایی نابهنجاری دمای فصلی در ایران است. در این راستا داده‌های روزانه دمای هوا از 45 ایستگاه همدید طی دوره آماری (2005-1970)، داده­های دمای روزانه مدل HadGEM2-ES و ریزگردانی شده با استفاده از روش CORDEX و سناریوهای RCP برای دو دوره تاریخی (2005-1960) و پیش­بینی شده طی سه دوره آینده نزدیک (2040-2011)، آینده میانی (2070-2041) و آینده دور (2099-2071) استفاده شد. برای ارزیابی کارایی مدل نیز از شش روش R2، MAE، MBE RMSE، t-Jacovides و نسبت t-Jacovides/R2 استفاده شد. نتایج نشان داد که مدل از عملکرد مناسبی برخوردار است. نابهنجاری دمای فصلی در تمام فصول، سناریوها و دوره­های زمانی مورد مطالعه مثبت و فصل زمستان بیشینه نابهنجاری دما را در بین فصول نشان داده است که یک تهدید بزرگ برای منابع آب کشور تلقی می‌شود. بیشینه نابهنجاری فصلی دمای ایران در فصول زمستان و بهار منطبق بر ارتفاعات و عرض­های جغرافیایی بالاست که شمال غرب به‌عنوان کانون نابهنجاری­ها شناخته شد. در تابستان ارتفاعات و ایران مرکزی بیشینه نابهنجاری دمای هوا را نشان داده­اند. فصل پاییز نماینده بیشینه نابهنجاری دما در سواحل جنوبی ایران و نوار شرقی کشور است. همچنین، یک پاسخ فصلی از عملکرد مدل و تغییرات فضایی دمای هوا در ارتباط با ارتفاع و توزیع ناهمواری‌ها در کشور دیده می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Performance of the HadGEM2-ES Model in the Evaluation of Seasonal Temperature Anomaly of Iran under RCP scenarios

نویسندگان [English]

  • Mahmoud Ahmadi 1
  • Abbas Ali Dadashi Roudbari 2
  • Tayebeh Akbari Azirani 3
  • Jamal Karami 4
1 Associate Professor, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 Ph.D. Student, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 Assistant Professor, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
4 M.Sc. Student, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Global warming is considered as a major challenge for food security and in recent years, it has attracted attentions, especially in arid areas. The Middle East and the Mediterranean are known as sensitive areas to climate changes. It is essential to understand the condition of climate changes, firstly at regional scales and secondly at large scales to adopt appropriate policies. Although the variety of seasonal temperature anomalies by the CMIP5 through the use of statistical downscaling model has not been thoroughly investigated. The aim of this research is to evaluate the diversity of seasonal temperature anomalies which are extracted from RegCM2-ES as the CMIP5 collection model based on the dynamic regression method by CORDEX model for the first time in Iran.
In this study, the HadGEM2-ES model has been applied as one of the CMIP5 collection models to investigate the seasonal temperature anomaly by the use of CORDEX dynamic regression downscaling method under the Representative Concentration Pathway (RCP) scenarios. This model was operated for the period (1970-2005) and for a predicted future period (2011-2099) under three RCP scenarios (RCP2.6, RCP4.5, RCP8.5). In order to achieve better evaluation of global warming at the next step, the model data was divided into three time intervals comprises near future (2011-2040), middle future (2041-2070), and far future (2071-2099). The model was validated using data based on 31 synoptic stations and by applying six statistics of deterministic coefficient (R2), mean absolute error (MAE), mean bias error (MBE), root mean square error (RMSE), t-Jacovides, and t-Jacovides/R2 ratio.
According to statistical results of validation, the HadGem2-ES model proves that it has appropriate ability to reconstruct the seasonal temperature anomalies. Results show that the seasonal temperature anomalies are positive during the study of time intervals under the used RCP scenarios and it is high in winters which is considered as a significant threat to the water resources in Iran. The reconstructed maximum seasonal temperature anomalies indicate that it matchs well in high regions and high latitudes during winters and springs. Subsequently the northwest of Iran is known as the center of maximum temperature anomalies. In summer, the mountains and central Iran indicate the maximum temperature anomalies while in autumn, anomalies are recognized on the coastal regions in the south and east border of Iran. Furthermore, there is evidence for a seasonal response to performance of the model and spatial diversity based on different topography in Iran.
Based on the results, it can be concluded that the most seasonal temperature anomalies based on the HadGEM2-ES model and dynamical downscaling CORDEX method is evident in high latitudes and mountainous regions of Iran. There is a different pattern of maximum positive anomalies in southwest, south, southeast, and east of country during autumn. Not only was the temperature anomaly positive in all of seasons but also it was positive in each of scenarios and time periods of study. Consequently, it is a major threat to natural water resources in Iran. The temperature anomaly extracted from HadGEM2-ES Model comparing to the temperature ranges of different models proves that according to global warming, there is a reduction in the cold extreme events in Iran. Moreover, the spatial variation of temperature in Iran depends on the complex environment topography which causes a specific response of the model to surface forcing. It is concluded that the existence of snow is the main reason for increasing the temperature anomaly in the highlands of northwest of Iran.

کلیدواژه‌ها [English]

  • Temperature anomaly
  • HadGEM2-ES model
  • CORDEX
  • CMIP5
  • RCP scenarios
  • Iran
احمدی، م. و داداشی رودباری، ع.، 1395، دستورالعمل اجرایی ریز پیمانه‌نمایی آماری سری‌های روزانه آب‌وهوا، انتشارات نوید مهر، تهران.
احمدی، م.، داداشی رودباری، ع. و ابراهیمی، ر.، 1396، دورنمای فرین‌های گرم ایران مبتنی بر برونداد مدل میان‌مقیاس منطقه­ای (REGCM4)، فصلنامه علمی-پژوهشی و بین‌المللی انجمن جغرافیای ایران، 52، 67-80.
احمدی، م.، شکیبا، ع. و داداشی رودباری، ع.، 1398، بررسی نقش شاخص‌های پوشش گیاهی و مؤلفه‌های جغرافیایی مکان بر عمق نوری هواویزهای فصلی ایران، فیزیک زمین و فضا، 45(1)، 211-233.
امیدوار، ک.، ابراهیمی، ر.، داداشی رودباری، ع. و ملک میرزایی، م.، 1397، واکاوی زمانی- مکانی فرین‌های سرد ایران تحت تأثیر گرمایش جهانی به‌منظور کاهش مخاطرات، مدیریت مخاطرات محیطی، 2(4)، 423-437.
امیدوار، ک.، ابراهیمی، ر.، کیخسروی کیانی، م. و لکزاشکور، ق.، 1395، اثرگرمایش جهانی برتغییرات دمای ایران تحت مدل دینامیکی EH5OM، نشریه تحقیقات کاربردی علوم جغرافیایی، ۱۶ (۴۳)، ۱۹۵-۲۱۶.
اوجی، ر.، 1397، مقایسه ریزگردانی تک ایستگاهی و چند ایستگاهی فرین‎های دما و بارش (مطالعه موردی: سواحل جنوبی دریای خزر)، فیزیک زمین و فضا، 44(2)، 397-410.
براتی، غ. و موسوی، س. ش.، 1384، جابه‌جایی مکانی موج­های زمستانی گرما در ایران، مجله جغرافیا و توسعه، 5، 41-52.
حیدری، م. ا. و خوش‌اخلاق، ف.، 1394، اثر گرمایش جهانی بر مرکز چرخندزایی شرق مدیترانه و ارتباط آن با نابهنجاری بارش نیمه‌ غربی ایران، مطالعات جغرافیایی مناطق خشک، ۶ (۲۲)، ۷۲-۸۸.
شکوهی، م.، ثنائی نژاد، ح. و بنایان اول، م.، 1397، ارزیابی شبیه­سازی دما و بارشِ مدل­های اقلیمی CMIP5 در مطالعات منطقه­ای تغییر اقلیم (مطالعه موردی: مناطق عمده تولید گندم دیم در ایران). آب و خاک، 32(5)، 1013-1014.
شیر غلامی، ه. و قهرمان، ب.، 1384، بررسی روند تغییر دمای متوسط سالانه در ایران، علوم و فنون کشاورزی و منابع طبیعی، 9 (1)، 9-23.
علیجانی، ب.، 1389، آب‌وهوای ایران، انتشارات دانشگاه پیام نور، چاپ دهم، تهران، 221 ص.
کامیار، ا.، یزدان­پناه، ح. و موحدی، س.، 1397، ارزیابی دقت خروجی مدل‌های منطقه‌ای آب‌وهوا در ایران، پژوهش­های جغرافیای طبیعی، 50(1)، 161-176.
معصوم پورسماکوش، ج.، میری، م. و پورکمر، ف.، 1396، ارزیابی داده‌های مدل‌های اقلیمی CMIP5 در مقابل داده‌های مشاهده‌ای ایران، مجله ژئوفیزیک ایران، 11(4)، 40-53.
میراکبری، م.، مصباح زاده، ط، محسنی ساروی، م.، خسروی، ح. و مرتضایی فریزهندی، ق.، 1397، ارزیابی کارایی مدل سری CMIP5 در شبیه‏‌سازی و پیش‌بینی پارامترهای اقلیمی بارندگی، دما و سرعت باد (مطالعه موردی: استان یزد)، پژوهشهای جغرافیای طبیعی، 50(3)، 593-609.
هاردی، ج. ت.، 1387، تغییر اقلیم علل، اثرات و راه‌حل‌ها، ترجمه: مترجمان لیلی خزانه‌داری، منصوره کوهی، شهرزاد قندهاری و مهدی آسیائی، انتشارات پاپلی، مشهد، 364 ص.
Abbasnia, M., Tavousi, T. and Khosravi, M., 2016, Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models, Asia-Pacific Journal of Atmospheric Sciences, 52(4), 371-377.
Beniston, M., 2003, Climatic change in mountain regions: a review of possible impacts, In Climate variability and change in high elevation regions: Past, present & future (pp. 5-31). Springer, Dordrecht.
Bucchignani, E., Cattaneo, L., Panitz, H. J. and Mercogliano, P., 2016, Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain, Meteorology and Atmospheric Physics, 128(1), 73-95.
Cellitti, M. P., Walsh, J. E., Rauber, R. M. and Portis, D. H., 2006, Extreme cold air outbreaks over the United States, the polar vortex, and the large‐scale circulation, Journal of Geophysical Research: Atmospheres, 111(D2).
Chen, H. and Sun, J., 2013, Projected change in East Asian summer monsoon precipitation under RCP scenario, Meteorology and Atmospheric Physics, 121(1-2), 55-77.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S. and Martin, G., 2011, Development and evaluation of an Earth-System model–HadGEM2, Geoscientific Model Development, 4(4), 1051-1075.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Hinton, T., Jones, C. D., Liddicoat, S., Martin, G., O’Connor, F., Rae, J. and Senior, C., 2008, Evaluation of the HadGEM2 model, Hadley Cent. Tech. Note, 74.
Davini, P. and D’Andrea, F., 2016, Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements?, Journal of Climate, 29(24), 8823-8840.
Deng, H., Luo, Y., Yao, Y. and Liu, C., 2013, Spring and summer precipitation changes from 1880 to 2011 and the future projections from CMIP5 models in the Yangtze River Basin, China, Quaternary international, 304, 95-106.
Diffenbaugh, N. S. and Giorgi, F., 2012, Climate change hotspots in the CMIP5 global climate model ensemble, Climatic change, 114(3-4), 813-822.
Dosio, A. and Panitz, H. J., 2016, Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models, Climate Dynamics, 46(5-6), 1599-1625.
FallahGhalhari, G. F. and DadashiRoudbari, A. D., 2018, An investigation on thermal patterns in Iran based on spatial autocorrelation, Theoretical and applied climatology, 131(3-4): 865-876.
Fallah-Ghalhari, G., Shakeri, F. and Dadashi-Roudbari, A., 2019, Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 1-24. https://doi.org/10.1007/s00704-019-02906-9.
Gbobaniyi, E., Sarr, A., Sylla, M.B., Diallo, I., Lennard, C., Dosio, A., Dhiédiou, A., Kamga, A., Klutse, N.A.B., Hewitson, B. and Nikulin, G., 2014, Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa, International Journal of Climatology, 34(7), 2241-2257.
Ghimire, S., Choudhary, A. and Dimri, A. P., 2018, Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I, Climate dynamics, 50(7-8), 2311-2334.
Giorgi, F. and Lionello, P., 2008, Climate change projections for the Mediterranean region, Global and planetary change, 63(2-3), 90-104.
Giorgi, F., Diffenbaugh, N.S., Gao, X.J., Coppola, E., Dash, S.K., Frumento, O., Rauscher, S.A., Remedio, A., Sanda, I.S., Steiner, A. and Sylla, B., 2008, The regional climate change hyper‐matrix framework, Eos, Transactions American Geophysical Union, 89(45), 445-446.
Giorgi, F., Jones, C. and Asrar, G. R., 2009, Addressing climate information needs at the regional level: the CORDEX framework, World Meteorological Organization (WMO) Bulletin, 58(3), 175.
Gu, H., Yu, Z., Wang, J., Wang, G., Yang, T., Ju, Q., Yang, C., Xu, F. and Fan, C., 2015, Assessing CMIP5 general circulation model simulations of precipitation and temperature over China, International Journal of Climatology, 35(9), 2431-2440.
Guilyardi, E., Cai, W., Collins, M., Fedorov, A., Jin, F. F., Kumar, A., Sun, D. Z. and Wittenberg, A., 2012, New strategies for evaluating ENSO processes in climate models, Bulletin of the American Meteorological Society, 93(2), 235-238.
Haslinger, K., Anders, I. and Hofstätter, M., 2013, Regional climate modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region, Climate dynamics, 40(1-2), 511-529.
IPCC 2013, Climate Change 2013: The Physical Science Basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor,M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Working Group I Contribution to the IPSS 5th Assessment Report – Changes to the underlying Scientific/Technical Assessment, Cambridge University Press, Cambridge, UK & New York, USA.
Jacovides, C. P., 1998, Reply to comment on" Statistical procedures for the evaluation of evapotranspiration computing models", Agricultural Water Management, 37(1), 95-97.
Johns, T.C., Durman, C.F., Banks, H.T., Roberts, M.J., McLaren, A.J., Ridley, J.K., Senior, C.A., Williams, K.D., Jones, A., Rickard, G.J. and Cusack, S., 2006, The new Hadley Centre climate model (HadGEM1): Evaluation of coupled simulations, Journal of Climate, 19(7), 1327-1353.
Kumar, S., Merwade, V., Kinter III, J. L. and Niyogi, D., 2013, Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations, Journal of Climate, 26(12), 4168-4185.
Laprise, R., Hernández-Díaz, L., Tete, K., Sushama, L., Šeparović, L., Martynov, A., Winger, K. and Valin, M., 2013, Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5), Climate Dynamics, 41(11-12), 3219-3246.
Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E. and Zittis, G., 2016, Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century, Climatic Change, 137(1-2), 245-260.
Lu, A., Kang, S., Li, Z. and Theakstone, W. H., 2010, Altitude effects of climatic variation on Tibetan Plateau and its vicinities, Journal of Earth Science, 21(2), 189-198.
Lu, A., Pang, D., Ge, J., He, Y., Pang, H. and Yuan, L., 2006, Effect of landform on seasonal temperature structures across China in the past 52 years, Journal of Mountain Science, 3(2), 158.
Nengker, T., Choudhary, A. and Dimri, A. P., 2018, Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: part I, Climate dynamics, 50(7-8), 2411-2441.
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., Christensen, O.B., Déqué, M., Fernandez, J., Hänsler, A. and van Meijgaard, E., 2012, Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations, Journal of Climate, 25(18), 6057-6078.
Rebetez, M., 2004, Summer 2003 maximum and minimum daily temperatures over a 3300 m altitudinal range in the Alps, Climate Research, 27(1), 45-50.
Shi, Y., Gao, X., Zhang, D. and Giorgi, F., 2011, Climate change over the Yarlung Zangbo–Brahmaputra River Basin in the 21st century as simulated by a high resolution regional climate model, Quaternary international, 244(2), 159-168.
Solman, S. A., Nunez, M. N. and Cabré, M. F., 2008, Regional climate change experiments over southern South America. I: present climate, Climate Dynamics, 30(5), 533-552.
Sylla, M. B., Giorgi, F., Coppola, E. and Mariotti, L., 2013, Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation, International Journal of Climatology, 33(7), 1805-1817.
Thayyen, R. J. and Dimri, A. P., 2014, Factors controlling Slope Environmental Lapse Rate (SELR) of temperature in the monsoon and cold-arid glacio-hydrological regimes of the Himalaya, The Cryosphere Discussions, 8(6), 5645-5686.
Van Vooren, S., Van Schaeybroeck, B., Nyssen, J., Van Ginderachter, M. and Termonia, P., 2018, Evaluation of CORDEX rainfall in northwest Ethiopia: Sensitivity to the model representation of the orography, International Journal of Climatology.
Walsh, J. E., Jasperson, W. H. and Ross, B., 1985, Influences of snow cover and soil moisture on monthly air temperature, Monthly Weather Review, 113(5), 756-768.
Warnatzsch, E. A. and Reay, D. S., 2019, Temperature and precipitation change in Malawi: Evaluation of CORDEX-Africa climate simulations for climate change impact assessments and adaptation planning, Science of the Total Environment, 654, 378-392.
Westby, R. M., Lee, Y. Y. and Black, R. X., 2013, Anomalous temperature regimes during the cool season: long-term trends, low-frequency mode modulation, and representation in CMIP5 simulations, Journal of Climate, 26(22), 9061-9076.
Yan, L. and Liu, X., 2014, Has climatic warming over the Tibetan Plateau paused or continued in recent years, J. Earth Ocean Atmos. Sci, 1(1), 13-28.
Zhao, C., Liu, X., Ruby Leung, L. and Hagos, S., 2011, Radiative impact of mineral dust on monsoon precipitation variability over West Africa, Atmospheric Chemistry and Physics, 11(5), 1879-1893.