تحلیل پس‌لرزه‌های زمین‌لرزه 16 فروردین 1396 دوقلعه فریمان بر اساس داده‌های یک شبکه لرزه‌نگاری محلی موقت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، پژوهشکده زلزله‌شناسی، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

2 استادیار، پژوهشکده زلزله‌شناسی، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

3 دانشیار، پژوهشکده زلزله‌شناسی، پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله، تهران، ایران

چکیده

در ساعت 10:39:10 صبح روز 16/1/1396 (مطابق با 6:09:10 به وقت جهانی روز 05/04/2017) زمین‌لرزه‌ای با بزرگی ML=6 روستای دوقلعه در 46 کیلومتری شمال‌شرقی فریمان از توابع خراسان‌رضوی را تخریب کرد. رو مرکز این زمین­لرزه در 81/35 درجه عرض شمالی و 36/60 درجه طول شرقی و عمق 13 کیلومتری محاسبه شد. پس از وقوع زمین‌لرزه اصلی پس‌لرزه­های فراوانی به‌وقوع پیوست که بزرگ‌ترین آنها حدود 14 ساعت بعد از زمین‌لرزه اصلی با بزرگی ML=5.5 خراسان‌رضوی را به‌شدت لرزاند. با توجه به پیشینه لرزه‌خیزی تاریخی و دستگاهی، علی‌رغم اینکه پهنه خراسان‌ از مناطق فعال و لرزه­خیز ایران است اما در منطقه فریمان به‌جز چند مورد، زمین­لرزه بزرگی گزارش نشده است. بلافاصله پس از وقوع این زمین­لرزه یک شبکه موقت محلی با توانمندی 16 ایستگاه لرزه‌نگاری و سه ایستگاه شتاب‌نگاری به‌مدت 36 روز توسط پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله در منطقه نصب شد و فرصت مناسبی برای بررسی توزیع مکانی پس‌لرزه­ها، شناخت گسل مسبب و ویژگی‌های زلزله شناختی این زمین­لرزه که در ایالت لرزه‌زمین‌ساختی کپه‌داغ قرار دارد را فراهم آورد که در این پژوهش پس از به‌دست آوردن نسبت سرعت موج P به S به روش واداتی، بهینه‌سازی مدل یک‌بعدی اولیه انجام گرفته و پس‌لرزه­ها مجدداً تعیین محل شده­اند. سازوکارهای به‌دست آمده از روش ترکیبی پلاریته و نسبت دامنه بیانگر این است که روند گسل مسبب آنها غالباً به‌صورت شمال­غربی-جنوب­شرقی است. توزیع پس‌لرزه­ها نیز روندی شمال‌غربی-جنوب­شرقی نشان می­دهد که در ادامه گسل مزدوران و هم‌راستا با گسل فریمان می‌باشد اما با توجه به اینکه نوع سازوکارها غالباً فشاری و فشاری با مؤلفه امتداد‌لغز بوده است لذا احتمال اینکه گسل مسبب گسل مزدوران باشد بیشتر است. نمودار توزیع عمقی پس‌لرزه­ها بیانگر آن است که عمده پس‌لرزه­ها در محدوده 8-4 کیلومتر از سطح زمین رخ داده­اند. علاوه‌بر آن با ترسیم پروفیل­هایی در راستا و عمود بر روند پس­لرزه­ها مشاهده شد که عمق غالب پس­لرزه­ها کمتر از 10 کیلومتر همراه با به‌خط‌شدگی کاملاً واضح با شیب به‌سمت شمال‌شرقی می­باشد. نتایج کلی این مطالعه نشان می­دهد که فعالیت لرزه­ای گسل پی­سنگی در عمق کمتر از 10 کیلومتر صورت گرفته است بنابراین ضرورت رعایت دقیق مقررات ساخت‌وساز بر اساس معیارهای فنی استاندارد در طراحی و ساخت بناهای مسکونی و صنعتی در منطقه فریمان برای کاهش آسیب­های وسیع ناشی از زلزله­های مخرب آتی اجتناب‌ناپذیر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the Do-Ghaleh Fariman Mw6 Earthquake on 5 April 2017 And its aftershocks based on IIEES local Seismic Network

نویسندگان [English]

  • Hamid Khosravi 1
  • Gholam Javan Doloei 2
  • Mohammad Tatar 3
  • Mahdieh Safari 1
1 M.Sc. Student, Seismology Department, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
2 Assistant Professor, Seismology Department, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
3 Associate Professor, Seismology Department, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
چکیده [English]

The Mw 6.0 Do-Ghaleh Fariman earthquake occurred at 10:39 local time (06:09 GMT) on 2017 April 5, in 46 km away from Fariman city of Khorasan Razavi province in northeast Iran (Figure 1). The mainshock had a maximum Mercalli intensity of VIII (Severe) (Ahmadzadeh et al., 2018), and was felt by many people a radius of 200 km in eastern part of Iran. Despite the low population density, the earthquake caused widespread destruction, killing 2 people and injuring a further 100 people. Although many historical and instrumental destructive earthquakes have occurred in Great Khorasan, no evidences from large earthquakes reported in Fariman region. Immediately, after Do-Ghaleh Fariman earthquake, International Institute of Earthquake Engineering and Seismology (IIEES) decided to design an intensive seismic network around epicenter for monitoring aftershocks and seismological aspects studies. The IIEES local seismic network contains 16 velocitymeter (Lenartz 20 Sec) and 3 accelerometers (CMG-5TD Guralp with ±2g sensitivity) that deployed in the region for 40 days (Figure 1). The sampling rate of waveform data have been chosen at 200Hz for all seismic stations. Data acquisition is leading to 1500 aftershocks with high quality waveforms in this area. The IIEES velocity model is used as initial velocity model in Lotus12 program for optimizing velocity model in Fariman region. The optimum derived velocity model (as shown in table 4) is used for relocation of aftershocks. Figure 3 shows the location map of relocated aftershocks and seismic stations. The cross sections of well relocated events show a NW-SE dip direction (Figure 3).
 To relocate the mainshock and to derive the fault plane solution we have retrieved all waveforms from seismic stations, both Iran Seismic center (ISC) belong to Institute of Geophysics at University of Tehran (IGUT) and Iran National Center of Broadband of Seismic Network belong to IIEES. For fault plane solution the first P-wave polarity method (Snoke et al., 1984) is used. The result of our relocation and fault plane solution of the main shock is shown in figure 5 & table 5 in comparison with other seismic agencies reports. To estimate the fault plane solutions of well-relocated aftershocks, we extracted 120 aftershocks with azimuthal gap less than 160°. The results of our fault plane solutions of 38 aftershocks with high quality are shown in figure 6 that have azimuthal gap less than 120° and recorded at least in 16 seismic stations. Focal mechanisms of 15 aftershocks are reversed which is numbered from 1 to 15 as shown in figure 6 and table 7. However, the rest of fault plane solutions show reverse mechanisms with strike slip component. Generally, the total average trend of reactivated fault, show NNW-SSE direction based on our study that is in good agreement with the trend and focal mechanism of Mozdoran fault (figure 6). Therefore, reactivation of the Mozdoran fault can be considered as main source of Do-Ghaleh Fariman Mw6 earthquake on April 5 2017. It should be noted that in some technical reports (e.g. Naimi, 2017) and old geological maps the final section of the Mozdoran fault is termed in Chah-Mazar fault.

کلیدواژه‌ها [English]

  • Do-Ghale Fariman Earthquake
  • Seismic network
  • Kope-Dagh
  • Mozdoran Fault
  • Focal mechanism
آقانباتی، ع.، ١٣٨٣، زمین شناسی ایران: انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، تهران، ص ٦٠٦.
افتخارنژاد، ج. و بهروزی، ا.، 1370، یافته­ای جدید از سنگ‌های افیولیتی و سنگ­های پالئوزوییک پایانی در شمال خاوری خراسان(از جمله کپه داغ) و اهمیت ژئودینامیکی آن، فصلنامه علوم زمین، 1(1)، 4-15.
بربریان، م.، قرشی، م.، شجاع طاهری، ج.، و طالبیان، م.، 1378، پژوهش و بررسی ژرف نوزمین ساخت، لرزه زمین ساخت و خطر زمین لرزه-گسلش در گستره مشهد-نیشابور. سازمان زمین شناستن ی کشور، گزارش شماره 72.
حسامی­آذر، خ.، جمالی فرد، ف. و طبسی، ه. 1382، نقشه گسل­های فعال ایران، پژوهشگاه بین­المللی زلزله‌شناسی و مهندسی زلزله.
حسامی­آذر، خ. 1387، بخش لرزه‌زمین‌ساخت از گزارش مطالعات برآورد خطر زمین‌لرزه و ژئوتکنیک لرزه­ای در ساختگاه حرم مطهر امام رضا (ع)، پژوهشگاه بین­المللی زلزله‌شناسی و مهندسی زلزله.
سازمان فضایی کشور، 1396، گزارش بخش سنجش از دور سازمان فضایی کشور از زمین‌لرزه 16 فروردین 1396 شمال‌شرق فریمان استان خراسان‌رضوی.
شیخ الاسلامی، م.ر، جوادی، ح.ج، اسدی سرشار، م.، آقاحسینی، ا.، کوه پیما، م. و وحدتی دانشمند، ب.، 1392، دانشنامه­ی گسله­های ایران، پژوهشکده علوم زمین سازمان زمین شناسی و اکتشافات معدنی کشور.
فروتن، م. و خیراللهی، ح. ، 1393، نقشه گسل­های مغناطیسی بنیادی ایران، مقیاس 1:2500000، سازمان زمین شناسی و اکتشافات معدنی کشور.
Ahmadzadeh, S., Javan Doloei, G. and Zafarani, H., 2019, New Intensity Prediction Equation for Iran: J. Seismol., https://doi.org/10.1007/s10950-019-097-882.
Ambraseys, N. N. and Melville C. P., 1982, A history of Persian earthquakes, Cambridge University Press.
Berberian, M. and king, G.C.P., 1981, Toward a paleogeography and tectonic evolution of Iran, Canadian J. Earth Sci. 18, 210-265.
Berberian, M. and Yeats, R. S., 2001, Contribution of archaeological data to studies of earthquake history in the Iranian Plateau: Journal of Structural Geology, 23, 563-584.
Gillard, D. and Wyss, M., 1995, Comparison of strain and stress tensor orientation: Application to Iran and southern California: J. Geophys. Res., 100(B 11), 22197-22213.
Havskov, J. and Ottemoller, L., 2010, Routine Data Processing in Earthquake Seismology: Springer Science +Business Media, B. V., 352 pp.
Jackson, L. and McKenzie, D., 1984, Active tectonics of the Alpine-Himalayan belt between Western Turkey and Pakistan: Geophys. J. Astr. Soc., 77, 185-264.
Koulakov, I., 2012, Code LOTOS-12 for 3D tomographic inversion based on passive seismic data from local and regional events.
Naimi, G. N., 2017, Report of Earthquake Mw6.1 Sefid Sang Mashhad 2017-04-05, Technical report, Geological survey of Iran, DOI:10.13140/RG.2.2.10927.94888.
Snoke, J. A., Munsey, J. W., Teague, A. G. and Bollinger, G. A., 1984, A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data: Earthquake Notes, 55, p15.