اکتشاف آب‌زیرزمینی کارستی با استفاده از توموگرافی مقاومت‌ویژه الکتریکی و سنجش از دور، شمال شرق خوزستان

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

2 استاد، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

با توجه به رشد سریع جمعیت و تغییرات اقلیمی انتظار می‌رود در آینده نزدیک منابع آب‌زیرزمینی به‌طور فزاینده‌ای جهت تأمین آب شرب مورد استفاده قرار گیرند. روش‌های مقرون‌به‌صرفه و کارآمد برای اکتشاف آب‌های زیرزمینی به‌ویژه در مناطق آهکی می‌توانند به‌عنوان ابزاری مناسب جهت شناخت پتانسیل هیدروژئولوژی کارستی به‌کار گرفته شوند. این مقاله روش اکتشافی مبتنی بر سنجش از دور و GIS را به‌منظور شناسایی نواحی با پتانسیل بالا آب‌زیرزمینی و توموگرافی ژئوالکتریک را به‌منظور تعیین محل دقیق حفاری چاه‌های آب ارایه می‌دهد. در این مطالعه یک مدل هیدرو-تکتونیکی شامل لایه‌های مؤثر بر هیدروژئولوژی کارست، برای تشخیص مناطق با پتانسیل آب‌زیرزمینی زیاد در کارست ایذه، شمال شرق خوزستان، به‌کار گرفته شد. سنجش از دور همراه با GIS برای تلفیق لایه‌های فاصله از منطقه تخلیه، اختلاف تراز ارتفاعی، چگالی شکستگی‌ها، شیب، و چگالی تقاطع شکستگی‌ها به‌کار گرفته شد. وزن پارامترهای مدل براساس اهمیت آنها بر هیدروژئولوژی کارست بین 1 تا 5 تعیین شد. به‌منظور تعیین محل دقیق نقاط مناسب حفاری در مناطق با پتانسیل زیاد، عملیات داده‌برداری ژئوالکتریک در دو پروفیل با آرایه دوقطبی-دوقطبی انجام، و سپس توموگرافی مقاومت‌ویژه الکتریکی دوبعدی در مناطق انجام شد. براساس نتایج توموگرافی ژئوالکتریک در آهک آسماری ایذه، مقاومت‌ویژه الکتریکی زیاد (بین 200 تا 1000 اهم‌متر) بیانگر آهک خشک می‌باشد که در هنگام وجود آب در آنها مقاومت‌ویژه الکتریکی (تا حدود 50-150 اهم‌متر) کاهش می‌یابد. حفرات خشک با بی‌هنجاری مقاومت‌ویژه الکتریکی در پروفیل جاموشی با مقاومت‌ویژه الکتریکی حدود 400 اهم‌متر و در سایت غرب ایذه با مقاومت‌ویژه الکتریکی بسیارزیاد (1500 تا بیش از 2000 اهم‌متر) در زمینه آهکی قابل‌تشخیص است. لایه‌های مارنی و آهک مارنی با نفوذپذیری کم، می‌توانند با مقاومت‌ویژه الکتریکی بسیارکم (کمتر از 20 اهم‌متر) از لایه‌های آهک آب‌دار (حدود 100 تا 200 اهم‌متر) تشخیص داده شوند. حفاری یک حلقه چاه آهکی با آبدهی زیاد (61 لیتر در ثانیه) و افت کم (48/0 متر) در پاییز 1398 در کارست غرب ایذه نمایانگر کارآیی تلفیق روش‌های اکتشافی به‌کار گرفته شده می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Exploration of Karst Groundwater using Electrical Resistivity Tomography and Remote Sensing, North East Khuzestan

نویسندگان [English]

  • Leila Mirzaei 1
  • Mohammad Kazem Hafizi 2
  • Mohammad Ali Riahi 2
1 M.Sc. Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Groundwater is the largest available freshwater resource in the world. Aquifers provide drinking water to at least 50% of the global population, and account for 43% of all water used for irrigation. Groundwater resources can be expected to be increasingly relied upon, in the near future, as a consequence of rapid population growth and global environmental change. Cost-effective and efficient techniques for groundwater exploration, especially in karstic regions, can be used to as an appropriate tool to recognition of karst hydrogeological potential.
This paper provides a method based on the RS/GIS for the recognition of high groundwater potential areas and geoelectrical tomography for precise determination of the water well drilling location. Groundwater mapping has been defined as a tool for systematic development and planning of water resources (Elbeih, 2015). Hydrogeological maps provide spatially distributed information about aquifers, including their geological, hydrogeological and hydrochemical characteristics.
In this study, a hydro-tectonic model include effective layers on karst hydrogeology applied for the recognition of the high groundwater potential in karstic areas of Izeh, northeast Khuzestan. The combination of remote sensing and GIS used to overlay the major layers, i.e. distance from discharge point, elevation difference, fracture density, slope, and fracture intersection density. Generally, high altitude regions have a low groundwater potential and more groundwater can be found at lower altitudes; therefore, the altitude map generated from the DEM represents difference to known elevation of the discharge points. The areas away from the discharge point generally have lower probability of groundwater occurrence. The distance analysis in GIS was used to determine the map of distance from discharge point. Slope angle can be considered as a surrogate of surface runoff velocity and vertical percolation which affects recharge processes. However, in this study, the slope angle was considered as a positive factors on groundwater potential in the karstic areas. Geological fractures can have a significant effect on storage and flow of groundwater reservoirs. Especially in areas with shallow bedrock fractures, water infiltration can be enhanced due to increased porosity and hydraulic conductivity (Rao et al. 2001). The fracture locations in the study area were determined from the remote sensing techniques. The parameter are weighted from 1 to 5 based on their importance in karst hydrogeology.
For the exact determination of the water well drilling locations in high groundwater potential areas, the geoelectrical operation is done in two profiles using Dipole-Dipole array followed by electrical resistivity tomography. Over 20 boreholes have been drilled in karstic aquifer of Izeh for supplying the residence with drinking water. Despite the common use of geology for improving the siting of boreholes, some of the drilled holes does not deliver enough water to be equipped. The ERT method is used to determine the electrical resistivity distribution of the subsurface. Resistivity of the limestone rocks is linked to several parameters including type of limestone, cavity, water content, marl layer, electrical conductivity of water and the layer thickness. Because of different respective electrical resistivities in karstic areas, the ERT method provides useful results on the geometry of bedrock and aquifer. In an ERT survey, after inversion of the field data, the method provided a two-dimensional (2D) resistivity model of a section of the underground. Field data processing was performed with RES2DINV software. The parameters used in the inversion were the same for both of profiles, and topography was taken to normalize profile elevations to the actual ground surface. A robust algorithm was chosen for the inversion, because it provides more net changes in resistivity between different parts of the section. However, care must be taken when studying the final sections, because the geometry and boundaries of the structures are not always clearly identified and may be influenced by changes in resistivity due to rocks outside the plane of the section. The interpreted sections must be understood as an indication of the approximate location of the lithological boundaries, and not as its true geometry. The interpretation of the resistivity sections for all the ERT profiles has been drawn with the help of the correlation between the resistivity and the lithology along with the hydrogeologic data, and taking into account the continuity of the resistivity values at the crossing of the profiles. Overall, a very complicated structure is interpreted with the presence of dry and wet limestones, cavities, and marly layers interbeded with carbonates. Finally, two locations were proposed for drilling of water wells in the Izeh karstic area.
The drilling of a high yield water well (discharge of 61 L/S) and the low drawdown (0.48 m) in the karst of west Izeh at autumn 2019 indicates the effectiveness of the integration of the applied exploration methods. This work shows the power of geoelectrical method in poorly understood and tectonically complex areas in addition to the RS/GIS groundwater potential mapping to evaluate karst hydrogeology.

کلیدواژه‌ها [English]

  • Groundwater Exploration
  • Karst
  • Electrical Resistivity Tomography
  • remote sensing
  • Khuzestan
اسدی، ع.، پورکرمانی، م. و قلمکاری، س.، 1398، ارزیابی و اکتشاف منابع آب‌زیرزمینی با شناسایی ساختار لایه‌ای زمین با استفاده از روش زمین الکتریسیته در دشت رونیز؛ غرب استهبان، نشریه مهندسی منابع آب، 40، 39-49.
حفیظی، م.ک. و رادان، م. ی.، 1386، وارون‌سازی ترکیبی داده‌های مقاومت‌ویژه با آرایه های شلومبرژه و دوقطبی- دوقطبی به‌منظور تعیین مسیر درز و شکافهای آب‌دار، مجلة فیزیک زمین و فضا، (2) 69، 7-33.
کلانتری، ن.، علیجانی، ا.، علیجانی، ف. و دانشیان، ح.، 1398، بررسی تغییرات متفاوت سطح آب‌زیرزمینی در آبخوان‌های کارستی ایذه و لالی، شمال خوزستان، با تأکید بر سنجش ازدور، فصلنامه مطالعات جغرافیایی مناطق خشک، 9(35)، 1-13.
ملامحمدی زاده، م.  و قربانی، ا.، 1391، کاربرد توموگرافی مقاومت‌ویژه الکتریکی دو‌بعدی در اکتشاف آب‌های زیرزمینی برای اعماق زیاد: مطالعه مورد دشت نوق رفسنجان، اولین کنفرانس ملی فناوری‌های معدن‌کاری ایران، یزد.
Abdalla, F., 2012, Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the central Eastern Desert, Egypt, Journal of African Earth Sciences, 70, 8–17.
Abrams, W., Ghoneim, E., Shew, R., LaMaskin, T., Al-Bloushi, K., Hussein, S., AbuBakr, M., Al-Mulla, E., Al-Awar, M. and El-Baz, F., 2018, Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with simple additive weight (SAW), analytical hierarchy process (AHP), and probabilistic frequency ratio (PFR) techniques, Journal of Arid Environment, https://doi.org/10.1016/j.jaridenv.2018.05.005.
Alile, O. M., Ujuanbi, O. and Evbuomwan, I. A., 2010, Geoelectric investigation of groundwater in Obaretin Iyanomon Locality, Edostate, Nigeria, Geology and Mining Research, 3(1), 13-20.
Bashe, B. B., 2017, Groundwater potential mapping using remote sensing and GIS in Rift Valley Lakes Basin,Weito Sub Basin, Ethiopia, International Journal of Science and Engineering Researches, 8(2), 43–51.
Berry, J. K., 1993, Cartographic modeling: The analytical capabilities of GIS, In: Goodchild M, Parks B and Steyaert L (eds) Environmental Modeling with GIS, Oxford, Oxford University Press, 58-74.
Bharti, R., 2016, The vertical electrical sounding (VES) procedure to delineate potential groundwater aquifer in Guna Madhya Pradesh, Imperial Journal of Interdisciplinary Research, 24, 253-256.
Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. and Bosch, F. P., 2011, Contribution of geophysical methods to karst-system exploration: an overview, Hydrogeology Journal, 19(6), 1169–1180.
Dahlin, T., 1996, 2D resistivity surveying for environmental and engineering application, First Break, 14, 275-283.
Dasho, O. A., Ariyibi, E. A., Akinluyi, F. O., Awoyemi, M. O. and Adebayo A. S., 2017, Application of satellite remote sensing to groundwater potential modeling in Ejigbo area, southwestern Nigeria, Modeling Earth System Environment, 3, 615–633.
Díaz-Alcaide, S. and Martínez-Santos, P., 2019, Review: Advances in groundwater potential mapping, Hydrogeology Journal, doi:10.1007/s10040-019-02001-3.
Elbeih, S. F., 2015, An overview of integrated remote sensing and GIS for groundwater mapping in Egypt, Ain Shams Engineering Journal, 6, 1–15.
Gupta, G., Patil, J. D., Maiti, S., Erram, V. C., Pawar, N. J., Mahajan, S. H. and Suryawanshi, R. A., 2015, Electrical resistivity imaging for aquifer mapping over Chikotra basin, Kolhapur district, Maharashtra, Environmental Earth Sciences, 73(12), 8125–8143.
Haghizadeh, A., Moghaddam, D. D. and Pourghasemii, H. R., 2017, GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran), Journal of Earth System Sciences, 126:109. doi.org/10.1007/s12040-017-0888-x.
Herzfeld, U. C. and Merriam, D. F., 1995, Optimization techniques for integrating spatial data, Mathematical Geology 27, 559-586.
Jahan, C. S., Rahaman, M. F., Arefin, R., Ali, M. S. and Mazumder, Q. H., 2018, Delineation of groundwater potential zones of Atrai–Sib river basin in north-west Bangladesh using remote sensing and GIS technique, Sustainable Water Resources Management, doi.org/10.1007/s40899-018-0240-x.
Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J. and Saxena, R., 2003, Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: an approach, International Journal of Remote Sensing, 24(5), 993–1008.
Llamas, M. R. and Martínez-Santos, P., 2005, Intensive groundwater use: silent revolution and potential source of social conflict, Journal of Water Resources Planning Management 131(5), 337–341.
Loke, M. H. and Barker, R. D., 1995, Least-squares deconvolution of apparent resistivity pseudosections, Geophysics, 60(6), 1682-1690.
Lowry Jr., J., H., Miller, H. J. and Hepner, G. F., 1995, A GIS-based sensitivity analysis of community vulnerability to hazardous contaminations on the Mexico/U.S. Border. Photogrammetric Engineering and Remote Sensing, 61, 1347-1359
Malczewski, J. 2000, On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches, Transactions in GIS, 4(1), 5–22.
Manap, M. A., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B. and Surip, N., 2013, A knowledge-driven GIS modeling technique for groundwater potential mapping at the upper Langat Basin, Malaysia, Arabian Journal of Geoscience, 6, 1621–1637.
Mandal, U., Sahoo, S., Munusamy, S. B., Dhar, A., Panda, S. N., Kar, A. and Mishra, P. K., 2016, Delineation of groundwater potential zones of coastal Groundwater Basin using multi-criteria decision making technique, Water Resources Management, 30, 4293–4310.
Martín-Loeches, M., Reyes-López, J., Ramírez-Hernández, J., Temiño-Velan, J. and Martínez-Santos, P., 2018, Comparison of RS/GIS analysis with classic mapping approaches for siting low-yield boreholes for hand pumps in crystalline terrains: an application to rural communities of the Caimbambo province, Angola, Journal of African Earth Sciences, 138, 22–31.
Metwaly, M., Elawadi, E., Moustafal, S. R., Al Fouzan, F., Mogren, S. and Al Arifi, N., 2012, Groundwater exploration using geoelectrical resistivity technique at Al-Quwy’yia area Central Saudi Arabia, International Journal of the Physical Sciences, 7(2), 317-326.
Mohammadi, Z., Alijani, F. and Rangzan, K. 2014, DEFLOGIC: a method for assessment of groundwater potential in karst terrains: Gurpi anticline, southwest Iran, Arabian Journal of Geoscience, 7, 3639–3655.
Mohammadi-Behzad, H. R., Charchi, A., Kalantari, N., Nejad, A. M. and Vardanjani, H. K., 2018. Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: a case study in the Leylia–Keynow watershed, southwest of Iran, Carbonates and Evaporites, https://doi.org/10.1007/s13146-018-0420-7.
Oikonomidis, D., Dimogianni, S., Kazakis, N. and Voudouris, K., 2015, A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece, Journal of Hydrology, 525,197–208.
Oldenburg, D. W. and Li, Y. G., 1999, Estimating depth of investigation in DC resistivity and IP surveys, Geophysics, 64, 403-416.
Panahi, M. R., Mousavi, S. M. and Rahimzadegan, M., 2017, Delineation of groundwater potential zones using remote sensing, GIS and AHP technique in Tehran–Karaj plain, Iran, Environmental Earth Science 76(79.), https://doi.org/10.1007/s12665-017-7126-3.
Parks, S., Byrnes, J., Abdelsalam, M. G., Dávila, D. A. L., Atekwana, E. A. and Atya, M. A., 2017, Assessing groundwater accessibility in the Kharga Basin, Egypt: a remote sensing approach, Journal of African Earth Sciences, 136, 272-281.
Patra, S., Mishra, P. and Mahapatra, S. C., 2018, Delineation of groundwater potential zone for sustainable development: a case study from Ganga alluvial plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process, Journal of Clean Production, 172, 2485–2502.
Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V. and Singh, V. S., 2008, Deciphering potential groundwater zone in hard rock through the application of GIS, Environmental Geology, 55(3), 467-475.
Prins, C., Thuro, K. and Krautblatter, M., 2018, The effectiveness of an inverse Wenner-Schlumberger array for geoelectrical karst reconnaissance, on the Swabian Alb High Plain, New Line Wendlingen–Ulm, Southwestern Germany, IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 3, 115-122.
Rolia, E. and Sutjiningsih, D., 2018, Application of geoelectric method for groundwater exploration from surface (A literature study), In: AIP Conference Proceedings, doi:10.1063/1.5042874.
Samanovac, F. and Alvanja, S. D., 2007, Determination of resolution limits of electrical tomography on the block model in a homogenous environment by means of electrical modeling, Rudarsko Geološko Naftni Zbornik, 19(1), 47-56.
Sander, P., Chesley, M. M. and Minor, T. B., 1996, Groundwater assessment using RS and GIS in a rural groundwater project in Ghana: lessons learned, Hydrogeology Journal, 4, 40–49.
Saribudaka, M. and Hawkins, A., 2019, Hydrogeopysical characterization of the Haby Crossing fault, San Antonio, Texas, USA, Journal of Applied Geophysics, doi.org/10.1016/j.jappgeo.2019.01.009.
Zhou, W., Beck, B. F. and Stephenson, J. B., 2000, Reliability of dipole-dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes, Environmental Geology, 39, 760–766.