وارون‌سازی سه‌بعدی داده‌های مغناطیس‌سنجی با روش بولانگر و شوتو: مطالعه موردی روی داده‌های مغناطیس‌سنجی شهر قدیمی پمپی

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

2 دانشیار، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

با توجه به آن‌که ساختارهای زیر سطح در حالت کلی سه‌بعدی هستند، وارون‌سازی سه‌بعدی داده‌های مغناطیس‌سنجی از اهمیت ویژه‌ای برخوردار هستند. مسأله وارون‌سازی دارای دو نوع عدم‌یکتایی است: عدم‌یکتایی جبری و عدم‌یکتایی نظری به‌دلیل قضیه گاوس. از طرف دیگر، تغییرات کم در مقدار داده‌ها به‌دلیل وجود نوفه باعث تغییرات شدیدی در تخمین پارامترهای مدل می‌شود و این به‌معنای ناپایداری مسأله وارون‌سازی است. برای رفع این مشکلات می‌توان از قیدهای مختلف و اطلاعات اولیه بهره گرفت. در اینجا از الگوریتم وارون‌سازی بولانگر و شوتو استفاده خواهیم کرد که برای وارون‌سازی سه‌بعدی داده‌های گرانی‌سنجی معرفی شده است. در این الگوریتم سه قید همواری، فشردگی و وزن‌دهی عمقی به‌کار گرفته شده است. قید عمقی قبلاً در وارون‌سازی داده‌های مغناطیس‌سنجی و گرانی‌سنجی به‌کار گرفته شده است، اما از قید فشردگی در وارون‌سازی داده‌های مغناطیس‌سنجی به‌ندرت استفاده شده است. برای بررسی کارایی الگوریتم، از داده‌های مصنوعی حاصل از 1) مدل بلوک و 2) مدل دایک قائم و شیب‌دار استفاده شده است و مدل‌های بازیابی‌شده برای حالت بدون نوفه و با نوفه دلالت بر تفکیک‌پذیری خوب الگوریتم دارد. برای بررسی کارایی عملی الگوریتم پیشنهادی، این الگوریتم بر روی داده‌های برداشت شده در ناحیه‌ای از شهر قدیمی پمپی در ایتالیا اعمال شده است. نتایج حاصل از وارون‌سازی با استفاده از این الگوریتم، انطباق خوبی را با واقعیت نشان می­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3-D inversion of magnetic data using Boulanger and Chouteau algorithm: a case study on magnetic data of old Pompeii city

نویسندگان [English]

  • Ramin Varfinezhad 1
  • Behrooz Oskooi 2
1 Ph.D. Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
2 Associate Professor, Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Inversion of magnetic data is the most important step in the interpretation of magnetic anomalies. Availability of 3-D inversion of magnetic data is required because earth material properties generally change in all three special dimensions. Magnetic data inversion has two main problems about non-uniqueness and instability of the solution which can be obviated by using constraints and a priori information. Non-uniqueness is the consequence of two ambiguities: I) following Gauss theorem, there are many equivalent sources that can produce the same known field at the surface (theoretical ambiguity), II) since the parameterization of the problem is such that there are more unknowns than observations, the system does not provide enough information in order to uniquely determine model parameters (algebraic ambiguity). Every measurement of data on the earth’s surface contains some noise which imposes large changes on the inverse solution, therefore the problem is also ill-posed. There are many constraints including compactness, minimization of inertia around an axis or a point, depth weighting and etc. Different combinations of these constraints in the objective function lead to different algorithms each of which are appropriate for some cases. In this paper, inversion algorithm proposed by Boulanger and Chouteau are utilized for the 3-D inversion of magnetic data. This technique was introduced for inversion of gravity data. Their algorithm takes the advantage of a model weighting matrix derived by multiplying compactness, hardness and depth weighting constraints. Furthermore, smoothness matrix is also inserted in the algorithm. Compactness constraint, introduced by Last and Kubic, try to minimize the volume of the anomalous body in 3-D. Hardness constraint, represented by p < /strong>, is a diagonal matrix for which diagonal elements p < sub>ii is fixed at 10-2 or 1 depending on whether the value of the ith initial susceptibility is fixed by geological information or not. Depth weighting function, introduced by Li and Oldenberg, is used to counteract the natural decay of the kernel, so all the cells have an equal probability during the inversion. The subsurface is discretized into a lot of cells for which the susceptibility of each cell is assumed to be constant. The model parameter, susceptibility contrast, is also limited to lower and upper bounds. This algorithm was programmed in MATLAB software, and its efficiency was investigated by applying it on synthetic and real data. The first synthetic model is a cube and inversion process was done for free-noisy and noisy data (5 % random noise) and in both cases recovered models were satisfactory. The second case is the model of vertical and dip dykes as a more complex synthetic example. Inverting free-noisy data leads to the exact recovering of true model. The reconstructed model obtained from noisy data actually represented an acceptable model. Therefore, results of synthetic cases were promising enough and convince us in order to apply the algorithm to real cases. Finally, the algorithm was applied two real profiles related to the archeological data sets of an area in old Pompeii city near Naples in Italy. Both profile lengths are 35.5 m with interval sampling of 10.4 cm. Inversion result of the data using this 3-D algorithm represents anomalies that are in a good agreement with subsurface anomaly positions.

کلیدواژه‌ها [English]

  • compactness
  • depth weighting
  • inversion
  • magnetic
  • synthetic model
Aster, R. C., Borchers, B. and Thurber, C. H., 2018, Parameter estimation and inverse problems. Elsevier.
Backus, G. and Gilbert, J. F., 1967, Numerical applications of a formalism for geophysical inverse problems, Geophysical Journal of the Royal Astronomical Society, 13, 247-276.
Boulanger, O. and Chouteau, M., 2001, Constraints in 3D gravity inversion, Geophys. Prospect., 49, 265-280.
Cella, F. and Fedi, M., 2012, Inversion of potential field data using the structural index as weighting function rate decay, Geophys. Prospect, 60, 313-336.
Cooper, G. R. J. and Cowan, D. R., 2006, Enhancing potential field data using filters based on the local phase, Comput. Geosci., 32, 1585-1591.
Fedi, M., 2006, DEXP: A fast method to determine the depth and the structural index of potential fields sources, Geophysics, 72, 1-11.
Fedi, M. and Florio, G., 2009, Quarta T. Multiridge analysis of potential fields: geometrical method and reduced Euler deconvolution, Geophysics, 74, 53-65.
Grandis, H., 2013, Equivalent-Source from 3D Inversion Modeling for Magnetic Data Transformation, International Journal of Geosciences, 4(7), 1024-1030.
Green, W. R., 1975, Inversion of gravity profiles by use of a Backus- Gilbert approach: Geophysics, v. 40, p. 763-772.
Guillen, A. and Menichetti, V., 1984, Gravity and magnetic inversion with minimization of a specific functional: Geophysics, 49, 1354–1360.
Keating, P. and Pilkington, M., 2004, Euler deconvolution of the analytic signal and its application to magnetic interpretation, Geophysical prospecting, 52, 165-182.
Last, B. J. and Kubik, K., 1983, Compact gravity inversion, Geophysics, 48, 713-721.
Li, Y. and Oldenburg, D. W, 1996, 3-D inversion of magnetic data, Geophysics, 61, 394-408.
Paoletti, V., Ialongo, S., Florio, G., Fedi, M. and Cella, F., 2013, Self-constrained inversion of potential fields, Geophysical Journal International, 195(2), 854-869.
Pilkington, M., 2009, 3D magnetic data-space inversion with sparseness constraints, Geophysics, 74, 7-15.
Phillips, J. D., Hansen, R. O. and Blakely, R., 2007, The use of curvature in potential field interpretation, Explor. Geophys. 38, 111-119.
Rao, D. B. and Babu, N. R., 1991, A rapid method for three-dimensional modeling of magnetic anomalies. Geophysics, 56(11), 1729-1737.
Salem, A. and Ravat, D., 2003, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data, Geophysics, 68, 1952–1961.
Silva, J. B. C. and Barbosa, V. C. F., 2006, Interactive gravity inversion, Geophysics, 71, 1-9.
Stavrev, P. and Reid, A. B., 2007, Degrees of homogeneity of potential fields and structural indices of Euler deconvolution, Geophysics, 72, 1-12.
Varfinezhad, R., Oskooi, B. and Fedi, M., 2020, Joint Inversion of DC Resistivity and Magnetic Data, Constrained by Cross Gradients, Compactness and Depth Weighting. Pure Appl. Geophys. https://doi.org/10.1007/s00024-020-02457-5.