واکاوی تشدید الکترومغناطیسی وردسپهر در افزایش باران‌زایی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه فیزیک و علوم مهندسی، دانشگاه بین‌المللی امام خمینی (ره)، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، ایران

چکیده

در پژوهش حاضر روش بهبودیافته بررسی اثرات تلفیقی ناشی از تزریق میدان الکترومغناطیسی فشار قوی و برهم‌کنش با لایه­های زیرین وردسپهر به‌منظور افزایش باران­زایی پیشنهاد شده است. مکان­یابی پویا و شناسایی نقاط تبادلی در ارتفاعات وردسپهر-سطح زمین با حداکثرسازی بار الکتریکی تزریقی در این نقاط، زمینه افزایش توده­های ابر را فراهم کرده و باعث کاهش پراکندگی و چگالش بیشتر ذرات در ابر می­شود. پیشینه قابل‌قبول به‌دست آمده از تزریق میدان الکترومغناطیسی در لایه­های زیرین وردسپهر مناطق غرب و جنوب غرب ایران و افزایش بارش محلی نسبت به داده­های اقلیمی بلندمدت و کوتاه‌‌مدت منطقه، نویسندگان را بر آن داشت تا به‌عنوان پژوهشگر فناوری­های نوین محیط‌زیستی در حوزه فیزیک و با استناد بر دستاوردهای دینامیکی تبادلات میدان­های الکترومغناطیسی در ارتفاعات وردسپهر-سطح زمین، نقاط تشدید عملکرد تزریق را با هدف حداکثرسازی مطلوبیت نتایج گذشته در افزایش باران­زایی تعیین و مکان­یابی کند. فن محاسبات فیزیکی تشدیدکننده میدان­های تبادلی مکان­یابی شده در ارتفاعات مشخص از وردسپهر-سطح زمین نقش چشم­گیری در افزایش ایستایی و ضخامت میدان الکترومغناطیسی تزریق دارد. تشدید میدان باعث افزایش ضخامت میدان تزریقی شده (شعاع اثر میدان) و در نتیجه حداقل­سازی پراکنش توده­های ابر و افزایش چگالش بخار آب و هسته­های تراکمی را نسبت به نتایج سال 1392 نشان داد. سطح بارش نسبت به دوره سی­ساله و چند ساله اخیر بین 30-10 درصد افزایش و نسبت به اثر تزریق در نقاط تبادلی حدود 12-15 درصد افزایش مجدد دارد که درکل به‌طور میانگین 36 درصد افزایش بارش خواهد بود. تصحیحات دینامیکی تزریق در وردسپهر بر پایه محاسبات نظری می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Troposphere Electromagnetic Intensification in Enhancing Percipitation

نویسنده [English]

  • Arezu Jahanshir
Assistant Professor, Department of Physics and Engineering Sciences, Imam Khomeini International University, Buein Zahra Higher Education Centre of Engineering and Technology, Buein Zahra, Iran
چکیده [English]

Decreased precipitation and water scarcity are some of the important challenges in most parts of Iran in recent years and need a cost-effective solution based on high technical knowledge and equipment; To improve the meteorological conditions with modern technologies, one can use the high voltage injection air ionization equipment. The result efficiently can increase cloud-water vapor concentration nuclei due to generate duplex clouds. Recent theoretical and experimental work suggests that a charged atmosphere will have a lower nucleation barrier and will also help stabilize embryonic particles. This allows nucleation to occur at lower vapor concentrations and demonstrates that charged particle and molecular clusters, condensing around natural air ions can grow significantly faster than corresponding neutral clusters. The theoretical dynamic locating of the injection model also indicates that the nucleation rate of particles in the non-charged regions (without injection) is limited by the ion production rate from other sources such as cosmic rays. Thus, stable charged particle concentration by injection resulting from condensation and growth can survive long after ion injection and ionization. Theoretical study of dynamic locating of injection model establishes a relationship between the dynamic locating electromagnetic region of changing point ionization and precipitation microphysics. Mechanism troposphere ionization and the Earth electromagnetic field properties cannot be excluded and there are established electrical effects on precipitation microphysics. Building on the relationship between changing points and ion injection the observations are extended to the realm of electromagnetic field microphysics by exploring this model. The injection produces positive /negative ions and free electrons. Many of these ions will be quickly lost to ion-ion recombination. Some of the ions escape recombination or reduced ion concentrations because the ionization produced by the electric field often is decreased because of the dust storm or wind that are generated in fixed changing points. As we presented in this article, dynamic locating of injection in the troposphere is very important to provide additive effects increasing cloud concentrations and generating precipitation, which is the main achievement of this analytical-simulation work. In this analytical-simulation study, which is based on real and experimental data taken from the western and southwestern regions of Iran, we first review the background of the results obtained from the injection process and the effect of generating clouds in the troposphere. Then we obtain the results of the same data with the theoretical effect of dynamic locating and simulation with injection at the electromagnetic changing points. The results of the previous data assuming maximization of utility have been recalculated and compared. The injection results are optimized by a dynamic locating technique that affects utility indices of maximum electromagnetic changing field between troposphere-ground the earth thickness. Due to the increased generation of rainy clouds and maximization of their concentrations and increased local precipitation by the dynamic locating method at the injection site and the optimal operation of the equipment is investigated. The theoretical model that is presented shows that the theoretical dynamic locating of injection model by increasing in ionizing effect leads to a 15-20% increase in precipitation, decrease of 11% in temperature, increase of 10% in humidity.

کلیدواژه‌ها [English]

  • Electromagnetic Intensification
  • Precipitation
  • Cloud Generating
  • Electromagnetic Injection
  • Dynamic Locating
رضایی، ح. و یگانه، ب.، 1392، تحلیلی بر خشکسالی و اثرات آن بر اقتصاد کشاورزی و مهاجرتهای روستایی، م. پژوهش و برنامه ریزی روستایی، 4، 153-177
حیدری، ر. و جمشیدی، ا.، 1395، بررسی مفهوم امنیت زیست‌محیطی با نگاهی به چالش‌‌‌های امنیت زیست‌محیطی ایران، فصلنامه راهبرد اجتماعی فرهنگی، (5) 21.
سیدحسنی، م.، 1391، باروری ابرها: از باور تا واقعیت، انتشارات وزارت نیر، تهران، ایران.
شاهسونی، ع .، یاراحمدی، م.، جعفرزاده حقیقی فرد، ن.، نعیم آبادی، ا.، محمودیان، م.ح.، صاکی، ح.، صولت، محمدحسین، سلیمانی، ز. و ندافی، ک.، 1389، اثرات توفانهای گرد و غباری بر سلامت و محیط زیست، م. دانشگاه علوم پزشکی خراسان شمالی، 2-4، 45-56.
شجاع جمال آباد، م.، 1397، تأثیرات بحران خشکسالی بر کشاورزی، منابع طبیعی و محیط زیست، م. زیست سپهر، (1)13، 38-50.
طرح پژوهشی، 1392، «بومی­سازی فناوری کاهش گرد و غبار» به شماره 7751/ق/163 از مؤسسه استاندارد و بازرسی ایران.
غیور، م.، 1376، اثرات زیست‌محیطی و اقتصادی-اجتماعی خشکسالی، مجموعه مقالات همایش منطقه ای بحران آب و خشکسالی، دانشگاه آزاد رشت، 998-985.
فرج­زاده، م.، 1376، پیش­بینی احتمالات خشکسالی در ایران، م. مدرس، 4، 55-67.
محمدجانی، ا. و یزدانیان، ن.، 1393، تحلیل وضعیت بحران آب در کشور و الزامات مدیریت آن، نشریه روند (روند پژوهش های اقتصادی)، 21 (66-56)، 117-144.
Alonso, C., Raynor, P., Davies, P., Morrison, R. and Torremorell, M.,, 2015, Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs, Aierobiologia, 32(3), 405-419,
Biswanath, D., 2020, Rain Enhancement Technology: Making Sense of the “Cloud Seeding” Program in India, Bulletin of Science, Technology & Society, 39, (3-4), 33-42.
Shukla, S., Singh, G., Sarkar, K. and Meht, P., 2021, Novel Umbrella 360 Cloud Seeding Based on Self-Landing Reusable Hybrid Rocket, International Conference on Innovative Computing and Communications, 999-1011.
Chalmin, A., 2020, https://www.geoengineeringmonitor.org/2020/12/updates-on-weather-modifications-and-other-technologies-quarterly-4-part-3/
Chamberlain, W. and Hunten, D., 1978, Hydrodynamics of Atmospheres, International geophysics series, 36, Elsevier.
Chambers, R., Al-Kalbani, M., 2016, Using ground-based ionization to enhance rainfall in the Hajar Mountains, Oman. Arabian Journal of Geosciences, 9, 491.
CMA, 2014, China Meteorological Administration. Leadership and Governance. China Meteorological Administration. [Online] 2014. [Cited: March 03, 2016.] http://www.cma.gov.cn/en2014/aboutcma/leadership/.
CMA, 2013, Chinese Meteorological Administration. Chinese Meteorological Administration. [Online] January 23, 2013]http://www.cma.gov.cn/kppd/kppdqxsj/kppdrgyxtq/201301/t20130123_203899.html.
Cook, A., Hummelt S., Shapiro, M. and Temkin, R., 2011, Measurements of electron avalanche formation time in w-band microwave air breakdown, Physics of plasmas, 18, 080707.
Dolzhansky, F., 2013, Fundamentals of Geophysical Hydrodynamics, 1st Ed. Publisher: Springer Berlin Heidelberg.
Farhat, A. and Abuelgasim, A., 2021, Effect of cloud seeding on aerosol properties and particulate matter variability in the United Arab Emirates, International Journal of Environmental Science and Technology, 109.
Harrison, R., Nicoll, K., Mareev, M., Slyunyaev, N. and Rycroftet, M., 2020, Extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage, Proc. R. Soc. A, 476, 20190758.
Herbut, E., Sosnowka-Czajka, E. and Skomorucha, I., 2018, Air Ionization in Livestock Buildings – A Review, Ann. Anim. Sci., 18(4), 899–90.
Http://australianrain.com.au/resources/
Jahanshir, A., 2013, Artificial air ionization in the reduction of pollutants, 2nd National Conference on New Technologies for environmental pollution control, Sharif University, Tehran.
Jahanshir, A., 2014, Application of High Voltage Electric Discharge of the Air in Climate Change and Pollution Control, 2nd regional Conference on Climate Change & Global Warming, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran. https://civilica.com/doc/385382/
Jahanshir, A., 2016, Engineering physics achievements in reducing environmental crisis in the Persian Gulf and its coastal areas, Journal of Applied Sciences International, 6(1). 45-52.
Jahanshir, A., 2017, Weather modification techniques by electric field, International Journal of Environmental Protection and Policy, 5(5), 70-73.
Jiang, S., Ma, A. and Ramachandran, S., 2018, Negative Air Ions and Their Effects on Human Health and Air Quality Improvement, Int J Mol Sci.19(10), 2966.
Karimi, M., 2018, Iran's future climate conditions and hazard in climate research, 5(3),1-22.
Cheng, L., Gonze, E., Ondarts, M., Outin, J. and Gonthier, Y., 2020, Electrostatic precipitator for fine and ultrafine particle removal from indoor air environments, Separation and Purification Technology, 247(15), 116964.
Monrolin, N., Praud, O. and Plouraboué, F., 2018, Electrohydrodynamic ionic wind, force field, and ionic mobility in a positive dc wire-to-cylinders corona discharge in air, Phys. Rev. Fluids 3, 063701.
Peek, F., 1915, Dielectric phenomenon in high voltage engineering. McGraw-Hill Book Company.
Raiser, Y., 1991, Gas Discharge Physics. Berlin Heidelberg: Springer-Verlag.
Villermaux, A. and Bossa, B., 2009, Single-drop fragmentation determines size distribution of raindrops, Nature, 5, 697-702.
WMH, 2017, Weather Modification History, International collaboration between Jim Lee (Sumter, South Carolina, USA) and Domenic Marrama (Canmore, Alberta, Canada), https://weathermodificationhistory.com/operation-popeye-motorpool-intermediary-compatriot-weather-warfare-vietnam/
Xiaofeng, L., Yu, F. and Zhengjun, S., 2021, advances of silver iodide seeding agents for weather modification, Journal of Applied Meteorological Science, 32(2), 146-159.
Guo, X., Fu, D., Li, X., Hu, Zh., Lei, H., Xiao, H. and Hong, Y., 2014, Advances in cloud physics and weather modification in China, Advances in Atmospheric Sciences, 32(2), 230–249.