Akhoondzadeh, M., Parrot, M. and Saradjian, M. R., 2010a, Electron and ion density variations before strong earthquakes (M>6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci., 10, 7– 18. doi: 10.5194/nhess-10-7-2010.
Akhoondzadeh, M., 2012, Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Nat. Hazards Earth Syst. Sci., 12, 1453-1462, doi:10.5194/nhess-12-1453-2012.
Akhoondzadeh, M., 2013a, A MLP neural network as an investigator of TEC time series to detect seismo-ionospheric anomalies. Advances in Space Research, 51, 2048-2057.
Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A. and Cianchini, G., 2018, Multi precursors analysis associated with the powerful Ecuador (MW=7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Advances in Space Research, 61, 248-263. https://doi.org/10.1016/j.asr.2017.07.014.
Akhoondzadeh, M., De Santis, A., Marchetti, D., Piscini, A. and Jin, S., 2019, Anomalous seismo-LAI variations potentially associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Advances in Space Research, 64, 143–158. https://doi.org/10.1016/j.asr.2019.03.020
Chung, J., Gulcehre, C., Cho, K. and Bengio, Y., 2014, Empirical evaluation of gated recurrent neural networks on sequence modeling. arxiv prepr. arxiv1412.3555.
Freund, F., 2009, Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. in electromagnetic phenomena associated with earthquakes, ed. by m. Hayakawa, Transworld research network, Trivandrum, 41-96.
Goodfellow, I., Bengio, Y. and Courville, A., 2016, Deep learning, Mit press.
Graves, A., 2012, In supervised sequence labelling with recurrent neural networks. springer, berlin, Heidelberg, 5-12.
Graves, A., 2013, Generating sequences with recurrent neural networks. Arxiv Prepr. Arxiv1308.0850.
Hayakawa, M. and Molchanov, O. A., 2002, Seismo- electromagnetics: lithosphere-atmosphere-ionosphere coupling. terra scientific publishing co. Tokyo, 477.
Huang, C. J. and Kuo, P. H., 2018, A deep CNN-LSTM model for particulate matter (pm2. 5) forecasting in smart cities. Sensors, 18 (7), 2220-2232.
Khan, S., Rahmani, H., Shah, S.A.A. and Bennamoun, M., 2018, A guide to convolutional neural networks for computer vision. Synthesis Lectures on Computer Vision, 8(1), 1-207.
Liu, J.Y., Chuo, Y.J., Shan, S.J., Tsai, Y.B., Pulinets, S.A. and Yu, S.B., 2004, Pre-earthquake-ionospheric anomalies registered by continuous GPS TEC. Ann. Geophys., 22, 1585-1593.
Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J. and Runge, T. F., 1998, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33, 565-582, doi: 10.1029/97RS02707.
Parrot, M., 1995, Use of satellites to detect seismo-electromagnetic effects, main phenomenological features of ionospheric precursors of strong earthquakes. Advances in Space Research, 15 (11), 1337-1347.
Pulinets, S. and Boyarchuk, K. A., 2004, Ionospheric precursors of earthquakes. Springer, berlin.
Pulinets, S. and Ouzounov, D., 2011, Lithosphere - atmosphere - ionosphere coupling (LAIC) model - An unified concept for earthquake precursors validation. Journal of Asian Earth sciences, 41, 371-382.
Sorokin, V. M. and Pokhotelov, O. A., 2014, Model for the vlf/lf radio signal anomalies formation associated with earthquakes. Advances in Space Research, 54 (12), 2532-2539.
Williams, R. J. and Zipser, D., 1989, A learning algorithm for continually running fully recurrent neural networks. Neural Comput., 1 (2), 270–280.