تحلیل چندفرکتالی بارش‌های روزانه ایستگاه‌های منتخب غرب-جنوب غرب ایران

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم آباد، ایران

2 دانشیار، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم آباد، ایران

چکیده

بارش به‌عنوان یکی از متغیرترین پدیده‌های هواشناختی به‌شمار می‌رود که نوسان‌های بسیار شدیدی را در بُعد زمانی-مکانی نشان می‌دهد. چنین نوسان‌هایی در ساختار بارش، نتیجه تأثیرپذیری آن از فرایندهای پیچیده‌ایی است که در میان-مقیاس، بزرگ-مقیاس و مقیاس محلی فعال‌اند. در این مطالعه به‌منظور، شناسایی رفتار مقیاسی و خصوصیات چندفرکتالی سری زمانی بارش روزانه در منطقه غرب-جنوب غرب ایران، تحلیل فرکتالی-چندفرکتالی نوسان‌های روندزدایی‌شده (DFA2, MF-DFA2)، برروی سری زمانی 6 ایستگاه سینوپتیک واقع در منطقه یادشده که دارای آمار بلندمدت بودند، اجرا شد. نتایج حاصل ازDFA2  نشان داد که دو نقطه تقاطع به‌ترتیب در 180 و 550 روز در سیگنال بارش وجود دارد، این نقاط تقاطع به وجود سه رژیم مقیاسی متفاوت در بارش منطقه موردمطالعه اشاره دارند. از سویی نتایج حاصل از MF-DFA2 مشخص کرد که نمایه هرست تعمیم‌یافته (hq) با افزایش مقیاس زمانی بارش، همگرا شده‌اند، چنان‌که اختلاف بین نوسان‌های کوچک  با نوسان‌های بزرگ  در سری‌های زمانی کوچک-مقیاس بسیار بزرگ‌تر از سری‌های زمانی بزرگ-مقیاس است؛ بنابراین در کوچک-مقیاس، دوره‌هایی با نوسان بزرگ، به‌روشنی از دوره‌های با نوسان‌های کوچک، قابل تشخیص‌اند. سایر خصوصیات چندفرکتالی شامل کاهش hq ضمن افزایش مرتبه نوسان (q)، و غیرخطی‌بودن نمایه جرم  نسبت به q، دلالت بر ماهیت چندفرکتالی، رفتار مقیاسی چندگانه و حافظه غیرخطی سیگنال بارش ایستگاه‌ها مورد مطالعه دارند. خصوصیات تکینگی سیگنال بارش نیز نشان دادکه طیف تکینگی کل ایستگاه‌ها، نامتقارن بوده و دارای دُم‌های چپ بلند هستند که چنین الگوی در طیف تکینگی، دلالت بر نقش غالب نوسان‌های بزرگ در ساختار چندفرکتالی سیگنال بارش دارد. همچنین، پهنای طیف تکینگی نیز نشان می‌دهد که خاصیت چندفرکتالی و شدت نوسان‌های بارشی در ایستگاه‌های خرم‌آباد، دزفول و کرمانشاه شدیدتر از ایستگاه‌های آبادان، اهواز و سنندج است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multifractal analysis of daily precipitation of selected stations in the west - southwest of Iran

نویسندگان [English]

  • Hamid Mirhashemi 1
  • Dariush Yarahmadi 2
1 Assistant Professor, Department of Geography, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
2 Associate Professor, Department of Geography, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
چکیده [English]

The area of this study, which has covered large parts of the western-southwestern of Iran, has a special topographic and climatic variety. As this area is exposed to geomorphological features such as mountain and plain. In this regard, western and southwestern rainfall systems entering the area, show different reactions to these mid-scale phenomenon (Jahanbakhsh et al; 2020) that such a process has caused the scale behavior and more complex dynamic structure of the rainfall signal in the area. Therefore, on one hand to cover the whole area and on the other hand in order to have long-term daily rainfall statistics, six synotic stations including Khorramabad, Kermanshah, Sanandaj, Dezful, Ahvaz and Abadan stations were selected that have long-term statistics with 1961-2018 as representatives of this area. Also, in order to identify the scale behavior and the dynamics of the structure of the temporal series of rainfall in the western-southwestern of Iran, the fractal and multifractal changed fluctuation analysis method was used (DAF2, MF-DFA2).
 By using fractal-multifractal analysis of receding fluctuations on daily rainfall signal, it was shown that the rain of all the stations has a scale behavior. In this regard, three different scale periods were identified for records. So that, the fitting of the fluctuation function of DFA2 against different scales show that there are two cross over points that separate three different rainy regimes in the fluctuation function of the stations. These two crossover points are based on a temporal scale of 180 (6 months) and 550 days (approximately 2 years); Therefore, there are three different scale periods including small-scale (less than 6 months), mid-scale (from 6 months to 2 years) and large-scale (more than 2 years) in the rainy temporal series of the stations with different stability and dynamic rainy structure at these three temporal periods. Lovejoy and Mandelbrot, 1985; Matsoukas et al., 2000; Gan et al., 2007; Tan and Gan, (2017) claimed that the existence of cross over points in rainy temporal series, are different mechanisms of raining because temporal scales different. The values of scale exponent in these three periods showed that large-scale rainfalls do not follow a specific spatial pattern and show relatively homogeneous behavior. Although, small-scale raining period has a spatial behavior, in the way that the rain of southwestern stations shows more instability and short-term memory than western stations. Also the results of MF-DFA2 showed that these two cross over points are present in all fluctuations, so that different scale periods are also shown in small to large fluctuations and are not limited to medium period fluctuations. The results of MF-DFA2 showed that the generalized Hurst exponent (hq) has been converged with increasing rainy temporal scale, as the difference between the small fluctuations  and large fluctuations , the small-scale temporal series is larger than the large-scale temporal series; Thus, on a small scale, periods with large fluctuations can be clearly distinguished from periods with small fluctuations. Other multifractal properties, including a decreasing hq with increasing the rank of fluctuation (q), nonlinearity of mass signal  in relation to q indicate the multifractal nature and multiple scale behavior and nonlinear memory of the rainy signal of the studied stations (Adresh et al. 2020; Shimizu et al., 2002 ; Bunde et al., 2012; Tan and Gan, 2017).
On one hand, the comparison of the parameters of the singularity spectrum of the stations shows that all the singularity parameters are similar in the area, but have different intensities. In this regard, the singularity spectrum of all stations in the area is asymmetric and has long left tails. Such a tendency in the singularity spectrum indicates the predominant role of large fluctuations in the multifractal structure of the rainy signal (Telesca and Lovallo, 2011). Thus, the shape of the singularity spectrum reveals that the rainy temporal series in the area has such a multifractal structure which is sensitive to local fluctuations with large values (Kalamaras et al., 2017). In this regard, the rainy temporal series in Khorramabad, Kermanshah and Dezful stations were more complex than other temporal series and Abadan and Ahvaz stations showed a very unstable and noisy structure. On the other hand, the extreme rainfall of southwestern stations including Abadan, Ahvaz and Dezful are much more unstable than the western stations and show heavy rainfall. In this regard, although the structure of Sanandaj station rainfall series is highly sensitive to extreme rainfall, but the intensity of its instability rainfall is lower than the limit rainfall of southwestern stations such as Dezful, which are less sensitive to that of Sanandaj. Its scale exponent is equal to 0.67 with the scale exponent of Khorramabad and Kermanshah stations. In general, such results indicate complexities of temporal series s of rainfall that have very strong local fluctuations.

کلیدواژه‌ها [English]

  • singular spectrum
  • fluctuation
  • hurst exponent
  • presipitation signal
  • Multifractal
Adarsh, S., Nourani, V., Archana, D. and Dharan, D. S., 2020, Multifractal description of daily rainfall fields over India, Journal of Hydrology, 589, 124913.
Agbazo, M. N., Koto N’gobi, G., Alamou, E., Kounouhewa, B. and Afouda, A., 2019, Fractal analysis of the long-term memory in precipitation over Bénin (West Africa), Advances in Meteorology, 2019.
Baranowski, P., Krzyszczak, J., Slawinski, C., Hoffmann, H., Kozyra, J., Nieróbca, A., Siwek, K. and Gluza, A., 2015, Multifractal analysis of meteorological time series to assess climate impacts, Climate Research, 65, 39-52.
Bishop, S. M., Yarham, S. I., Navapurkar, V. U., Menon, D. K. and Ercole, A., 2012, Multifractal Analysis of Hemodynamic BehaviorIntraoperative Instability and Its Pharmacological Manipulation, Anesthesiology: The Journal of the American Society of Anesthesiologists, 117, 810-821.
Bunde, A., Bogachev, M. I. and Lennartz, S., 2012, Precipitation and river flow: Long-term memory and predictability of extreme events, Extreme Events and Natural Hazards: The Complexity Perspective, 196, 139-152.
De Lima, M. and De Lima, J., 2009, Investigating the multifractality of point precipitation in the Madeira archipelago, Nonlinear Processes in Geophysics, 16, 299-311.
Delworth, T. and Manaba, S., 1993, Climate variability and land-surface processes, Advances in Water Resources, 16, 3-20.
Eke, A., Herman, P., Kocsis, L. and Kozak, L., 2002, Fractal characterization of complexity in temporal physiological signals, Physiological measurement, 23, R1.
Feder, J. 2013, Fractals, Springer Science & Business Media.
Gan, T. Y., Gobena, A. K. and Wang, Q., 2007, Precipitation of southwestern Canada: Wavelet, scaling, multifractal analysis, and teleconnection to climate anomalies, Journal of Geophysical Research: Atmospheres, 112.
García‐Marín, A., Jiménez‐Hornero, F. and Ayuso, J., 2008, Applying multifractality and the self‐organized criticality theory to describe the temporal rainfall regimes in Andalusia (southern Spain), Hydrological Processes: An International Journal, 22, 295-308.
Guntu, R. K., Rathinasamy, M., Agarwal, A. and Sivakumar, B., 2020, Spatiotemporal variability of Indian rainfall using multiscale entropy, Journal of Hydrology, 124916.
Gupta, V. K. and Waymire, E., 1990, Multiscaling properties of spatial rainfall and river flow distributions, Journal of Geophysical Research: Atmospheres, 95, 1999-2009.
Hajian, S. and Movahed, M. S., 2010, Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations, Physica A: Statistical Mechanics and its Applications, 389, 4942-4957.
Hu, K., Ivanov, P. C., Chen, Z., Carpena, P. and Stanley, H. E., 2001, Effect of trends on detrended fluctuation analysis, Physical Review E, 64, 011114.
Jahanbakhsh, S., Khorshiddoust, A. M. and Mirhashemi, H., 2020, Analysis Cyclogenesis in the Lee of the Zagros Mountain(1999-2005), Geography and Planning, 24, 105-128.
Jiang, L., Li, N. and Zhao, X., 2017, Scaling behaviors of precipitation over China, Theoretical and Applied Climatology, 128, 63-70.
Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S. and Bunde, A., 2001, Detecting long-range correlations with detrended fluctuation analysis, Physica A: Statistical Mechanics and its Applications, 295, 441-454.
Kantelhardt, J. W., Koscielny‐Bunde, E., Rybski, D., Braun, P., Bunde, A. and Havlin, S., 2006, Long‐term persistence and multifractality of precipitation and river runoff records, Journal of Geophysical Research: Atmospheres, 111.
Kantelhardt, J. W., Rybski, D., Zschiegner, S. A., Braun, P., Koscielny-Bunde, E., Livina, V., Havlin, S. and Bunde, A., 2003, Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods, Physica A: Statistical Mechanics and its Applications, 330, 240-245.
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A. and Stanley, H. E., 2002, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A: Statistical Mechanics and its Applications, 316, 87-114.
Kumar, P. and Foufoula‐Georgiou, E., 1993, A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large‐and small‐scale features using wavelet transforms, Water Resources Research, 29, 2515-2532.
Labat, D., Masbou, J., Beaulieu, E. and Mangin, A., 2011, Scaling behavior of the fluctuations in stream flow at the outlet of karstic watersheds, France, Journal of hydrology, 410, 162-168.
Liu, D., Luo, M., Fu, Q., Zhang, Y., Imran, K. M., Zhao, D., Li, T. and Abrar, F. M., 2016, Precipitation complexity measurement using multifractal spectra empirical mode decomposition detrended fluctuation analysis, Water resources management, 30, 505-522.
Lovejoy, S. and Mandelbrot, B. B., 1985, Fractal properties of rain, and a fractal model, Tellus A, 37, 209-232.
Mali, P., 2015, Multifractal characterization of global temperature anomalies, Theoretical and Applied Climatology, 121, 641-648.
Matsoukas, C., Islam, S. and Rodriguez‐Iturbe, I., 2000, Detrended fluctuation analysis of rainfall and streamflow time series, Journal of Geophysical Research: Atmospheres, 105, 29165-29172.
Morata, A., Martín, M. L., Luna, M. Y. and Valero, F., 2006, Self-similarity patterns of precipitation in the Iberian Peninsula, Theoretical and Applied Climatology, 85, 41-59.
Movahed, M. S. and Hermanis, E., 2008, Fractal analysis of river flow fluctuations, Physica A: Statistical Mechanics and its Applications, 387, 915-932.
Movahed, M. S., Jafari, G., Ghasemi, F., Rahvar, S. and Tabar, M. R. R., 2006, Multifractal detrended fluctuation analysis of sunspot time series, Journal of Statistical Mechanics: Theory and Experiment, 2006, P02003.
Philippopoulos, K., Kalamaras, N., Tzanis, C. G., Deligiorgi, D. and Koutsogiannis, I., 2019, Multifractal detrended fluctuation analysis of temperature reanalysis data over Greece, Atmosphere, 10, 336.
Pierini, J. O. and Telesca, L., 2010, Fluctuation analysis of monthly rainfall time series, Fluctuation and Noise Letters, 9, 219-228.
Shimizu, Y., Thurner, S. and Ehrenberger, K., 2002, Multifractal spectra as a measure of complexity in human posture, Fractals, 10, 103-116.
Tan, X. and Gan, T. Y., 2017, Multifractality of Canadian precipitation and streamflow, International Journal of Climatology, 37, 1221-1236.
Taqqu, M. S., Teverovsky, V. and Willinger, W., 1995, Estimators for long-range dependence: an empirical study, Fractals, 3, 785-798.
Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D. and Pecknold, S., 1996, Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions, Journal of Geophysical Research: Atmospheres, 101, 26427-26440.
Valencia, J., Requejo, A. S., Gascó, J. and Tarquis, A., 2010, A universal multifractal description applied to precipitation patterns of the Ebro River Basin, Spain, Climate Research, 44, 17-25.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F., 2002, Ecological responses to recent climate change, Nature, 416, 389-395.
Yu, Z.-G., Leung, Y., Chen, Y. D., Zhang, Q., Anh, V. and Zhou, Y., 2014, Multifractal analyses of daily rainfall time series in Pearl River basin of China, Physica A: Statistical Mechanics and its Applications, 405, 193-202.
Zhang, Q., Xu, C.-Y. and Yang, T., 2009, Scaling properties of the runoff variations in the arid and semi-arid regions of China: a case study of the Yellow River basin, Stochastic Environmental Research and Risk Assessment, 23, 1103-1111.
Zhang, X., Zhang, G., Qiu, L., Zhang, B., Sun, Y., Gui, Z. and Zhang, Q., 2019, A Modified Multifractal Detrended Fluctuation Analysis (MFDFA) Approach for Multifractal Analysis of Precipitation in Dongting Lake Basin, China, Water, 11, 891.