اثر پهنای جریان جتی بر رشد امواج کژفشار

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم غیرزیستی جوی و اقیانوسی، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 استادیار، گروه علوم غیرزیستی جوی و اقیانوسی، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

3 استادیار، گروه علوم دریایی، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر، ایران

چکیده

جریان جتی، جریان باریک با عرض چند صد کیلومتر و طول چند هزار کیلومتر در سطوح بالایی وردسپهر است. وجود جریان جتی بر روی منطقه کژفشاری موجب افزایش چینش قائم باد در منطقه می‌شود. هدف این پژوهش مطالعه اثر پهنای جت بر ناپایداری کژفشار با استفاده از مدل شبه‌‌زمینگرد در صفحه بتا است. برای حل معادلات شبه‏زمینگرد در صفحه بتا از روش تفاضل متناهی برای گسسته‌‌سازی در راستای قائم و نصف‌النهاری استفاده شده است. همچنین جریان جتی با پهناهای متفاوت در مسئله تعریف شده و آهنگ رشد امواج جوی محاسبه می‌شود. نتایج نشان می‌دهد که با کاهش پهنای جت تا 2400 کیلومتر، آهنگ رشد نیز کاهش یافته است. ولی کاهش بیشتر پهنای جت منجر به افزایش آهنگ رشد می‌شود؛ بنابراین پهن‏ترین جت دارای بیشینه آهنگ رشد برای اعداد موج 6 الی 13 و باریک‌ترین جت دارای بیشینه آهنگ رشد برای اعداد موج 13 الی 20 است. در این حالت تحمیل عدد موج نصف‌النهاری روی جت‌های پهن ایجاد می‌شود و در جت‌های باریک سازوکار افت آهنگ رشد به‌دلیل تحمیل عدد موج نصف‌النهاری دیده نمی‌شود. محاسبه بخش موهومی سرعت فاز نشان داد که افزایش سرعت هسته جت با کاهش پهنای جت، موجب تقویت رشد امواج جوی می‌شود و دیگر اثر محدود‌کننده عدد موج نصف‌النهاری در مسئله دیده نمی‌شود؛ همچنین در طبیعت فرایند محدودشدن نصف‌النهاری برای جت‌های باریک دیده نمی‌شود. دلیل آن نیز افزایش سرعت هسته جت با باریک‌شدن پهنای جت در شرایط واقعی است؛ بنابراین محدودیت نصف‌النهاری جت‌های باریک مسئله‏ای انتزاعی بوده و در طبیعت دیده نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Jet Stream Width on the Growth of Baroclinic Waves

نویسندگان [English]

  • Ahmad Zadegh Abadi 1
  • Maryam Rezazadeh 2
  • Ali Mohammadi 3
1 Ph.D. Student, Department of Marine and Atmospheric Science (Non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
2 Assistant Professor, Department of Marine and Atmospheric Science (Non-Biologic), Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
3 Assistant Professor, Department of Marine Science, Imam Khomeini University of Marine Sciences, Noshahr, Iran
چکیده [English]

In this study, the effect of jet width on baroclinic instability is discussed, while a baroclinic instability problem is solved using a quasi-geostrophic (QG) model on a β-plane. To solve the QG equations on the β-plane, the finite difference method is applied in the vertical and meridional directions. Boundary conditions in this problem are considered for both vertical and meridional directions. Indeed, two hard boundaries at the surface of the Earth and tropopause are chosen for the vertical, with non-flux conditions at the upper and lower boundaries along the meridian. After discretization along both meridian and vertical directions, the equation takes the form of Sturm–Liouville, particularly the eigenvalue of the resulting Sturm – Liouville equation is the imaginary part of the phase velocity. Using the Matlab software, the eigenvalue instability equation can be solved. In this study, the effect of jet stream width on baroclinic instability is investigated. In addition, jet streams with different widths are defined and the growth rate of atmospheric waves is calculated.
The jet stream equation has a sinusoidal shape in the meridional direction, but an exponential form in the vertical, in which the jet width is adjusted using the sine-wave parameter. Once built according to the desired width, the problem is solved and the rate of the growth of atmospheric waves is obtained. The jet has a limited effect on the growth of atmospheric waves. The effect of the jet on the baroclinic instability is such that a disturbance with meridional wavenumber is imposed on the problem. The meridional wavenumber causes a decrease of the growth rate at the desired zonal wavenumber. For this reason, we conclude that the jet has a limited effect on the growth rate of baroclinic instability. The effect of the width on baroclinic instability is identified in a two-dimensional model, in which the vertical extent is an independent variable in the problem, such that the solution is very similar to the combination of Eady (1949) and Charney (1947) models. Using a quasi-terrestrial linear model, they concluded that jet streams width, increases the growth rate of waves. Their results are inconsistent with ours due to application of one-dimensional model in their study. They noted that jet stream introduces increasing or decreasing wind shear, and with increasing wind shear, an increasing growth rate of baroclinic instability is observed. However, this result cannot be generalized for a two-dimensional problem, in which for a range of latitudes, which is called a channel, the jet velocity at the bottom of the channel starts from a minimum, but increases to the maximum value in the middle of the channel and again decreases to the same value at the top of the channel. However, in a one-dimensional problem, only the jet stream core is considered, such that baroclinic instability is solved only on the vertical direction in the jet core. Thus, the effect of jet stream on baroclinic instability in a two-dimensional framework is conducted here. The instability problem is solved using the jet stream shown in Figure 1. According to Lindzen (1993), in the presence of a jet stream, the meridional wavenumber is equivalent to the inverse of the width of the jet, which increases as the jet width decreases, such that an increase in the meridional wavenumber is associated with a slowdown of the jet stream, following Eady (1949). Initially, by reducing the jet width to 2400 kilometers, the growth rate also decreases. However, reduction of the jet width to a certain extent (i.e., 3240 km) results in a decrease of the growth rate, while further decrease of the jet width is associated with an increase of the growth rate (e.g., for jet stream with widths of 2400 and 1710 km). Thus, the widest jet stream is associated with the maximum growth rate for wavenumbers between 6 and 13, while the narrowest jet stream is associated with the maximum growth rate for wavenumbers between 13 and 20.
The relationship between the jet bandwidth and velocity of the jet center based on observational data over the Pacific is discussed below. A linear relationship (34) is obtained between velocity of the jet core and the observed jet width. Velocity of the jet core increases with the decline of the jet width (Table 4). Width and velocity of the jet in Table 4 are plotted in the numerical scheme, in which real and imaginary parts of the phase velocity are calculated when the jet core velocity is increased following a decrease of the jet width, which results in an enhancing of the growth of atmospheric waves. Therefore, under real conditions, in which width and velocity of the jet core are represented in Table 3, a meridional constraint can no longer be introduced.

کلیدواژه‌ها [English]

  • jet stream
  • meridional wavenumber
  • β-plane
  • baroclinic instability
  • Sturm-Liouville equation
Chang, E. K. M., 2001, GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season, J. Atmos. Sci., 58, 1784–1800.
Charney, J. G., 1947, The dynamics of long waves in a baroclinic westerly current, Journal of Meteorology., 4,136-162.
Eady, E. T., 1949, Long waves and cyclone waves, Tellus, 1, 33-52.
Grotjahn, R., 2003, Baroclinic instability. Encyclopedia of Atmospheric Sciences, 419, 467.‏
Harnik, N. and Chang, E.K., 2004, The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability, J. Atmos. Sci., 61, 23-40.
Holton, J.R., 2004, An introduction to dynamic meteorology, American Journal of Physics., 41, 752-754.
Hoskins, B. and James, I., 2014, Rotation in the atmosphere. Fluid Dynamics of the Midlatitude Atmosphere, BJ Hoskins and IN James, Eds., John Wiley and Sons, 125-148.
Ioannou, P. and Lindzen, R.S., 1986, Baroclinic instability in the presence of barotropic jets, J. Atmos. Sci., 43, 2999-3014.
Jablonowski, C. and Williamson, D.L., 2006, A baroclinic instability test case for atmospheric model dynamical cores. Quarterly Journal of the Royal Meteorological Society, A journal of the atmospheric sciences, applied meteorology and physical oceanography., 132, 2943-2975.
Lindzen, R.S., 1993, Baroclinic neutrality and the tropopause, J. Atmos. Sci., 50, 1148-1151.
Lorenz, E. 1955, Available potential energy and the maintenance of the general circulation. Tellus. 7. 157– 167.
Nakamura, H., 1992, Midwinter suppression of baroclinic wave activity in the Pacific, J. Atmos. Sci., 49, 1629-1642.
Swanson, K.L., Kushner, P.J. and Held, I.M., 1997, Dynamics of barotropic storm tracks, J. Atmos. Sci., 54, 791-810.