احمدی، ف.، رادمنش، ف.، پرهام، غ. و میرعباسی نجفآبادی، ر.، 1396، کاربرد توابع مفصل ارشمیدسی در تحلیل فراوانی سیلاب (مطالعه موردی: حوضه آبریز دز)، م. تحقیقات آب و خاک ایران (علوم کشاورزی ایران)، (3) 48، 477-489.
خانی تملیه، ذ.، رضایی، ح. و میرعباسی، ر.، 1399، کاربرد توابع مفصل تودرتو برای تحلیل فراوانی چهار متغیره خشکسالیهای هواشناسی (مطالعه موردی: غرب ایران)، نشریه حفاظت منابع آب و خاک، (1) 10، 93-112.
عزیزآبادی، م.، بختیاری، ب.، قادری، ک. و رضاپور، م.، 1395، بررسی تأثیر تغییر اقلیم بر منحنیهای سختی-مدت-فراوانی خشکسالی حوزه آبریز قرهسو با استفاده از توابع مفصل، مجله تحقیقات منابع آب ایران، (4) 47، 743-754.
کوهی، م.، 1400، پیشنگری ویژگیهای خشکسالیآتی تحت سناریوهای RCP در چند نمونه اقلیمی ایران، نشریه پژوهشهای اقلیمشناسی، شماره 47، پاییز 1400.
کوهی، م.، 1396، تحلیل و بررسی خشکسالی تحت شرایط تغییر اقلیم با استفاده از توابع مفصل، پایان نامه دکتری، گروه مهندسی آب، دانشگاه فردوسی مشهد.
Amirkhani, S. and Chizari, M. 2010, Factors influencing drought management in Varamin Township. Proceedings of the Third Congress of Agricultural Extension and Natural Resources, pp. 107–118.
Bonaccorso, B., Cancelliere, A. and Rossi, G., 2003, An analytical formulation of return period of drought severity. Stochastic Environmental Research Risk, 17 (3), 157–174.
Brekke, L., Wood, A. and Pruitt, T., 2014, Downscaled CMIP3 and CMIP5 Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs; US Department of the Interior Bureau of Reclamation: Denver, CO, USA.
Chakravarti, I.M., Laha, R.G. and Roy, J., 1967, Handbook of methods of applied statistics. Wiley Series in Probability and Mathematical Statistics (USA) eng.
Chen, L., Singh, V.P., Guo, S., Hao, Z. and Li, T. 2012, Flood coincidence risk analysis using multivariate Copula functions. Journal of Hydrologic Engineering 17(6), 742-755.
Chen, L., Singh, V. P., Guo, S., Mishra, A. K. and Guo, J., 2013, Drought analysis using copulas. Jouranl of Hydrological Engineering, 18 (7), 797–808.
De Michele, C., Salvadori, G., Canossi, M., Petaccia, A. and Rosso, R., 2005, Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50–57.
Salvadori, G., De Michele, C. and Durante, F., 2011, On the return period and design in a multivariate framework. HYPERLINK "http://www.hydrol-earth-syst-sci.net/" Hydrology and Earth System Sciences, (11)15, 3293-3305.
Dupuis, D. J., 2007, Using Copulas in Hydrology: Benefits, Cautions, and Issues. Jouranl of Hydrologic Engineering, 12(4), 381-393.
Embrechts, P., Lindskog, F. and McNeil, A., 2003, Modelling Dependence with Copulas and Applications to Risk Management. In Rachev S. (eds),in Handbook of Heavy Tailed Distributions in Finance, 1nd ed. North Holland.
Frees, E. W. and Valdez, E. A., 1998, Understanding relationships using copulas. North American Actuarial Journal, 2(1), 1–25.
Frick, D. M., Bode, D. and Salas, J. D., 1990, Effect of drought on urban water supplies. I: Drought analysis. Journal of Hydraulic Engineering, 116(6), 733–753.
Ge, Y., Cai, X., Zhu, T. and Ringler, C., 2016, Drought frequency change:An assessment in northern India palins. Agricultural Water Management, 176, 111-121.
Genest, C. and Favre, A. C., 2007, Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering,12(4).
Genest, C., Rémillard, B. and Beaudoin, D., 2009, Goodness-of-fit tests for copulas: A review and a power study, Insurance: Mathematics and Economics, 44, 199-213.
Goel, N. K., Seth, S. M. and Chandra, S., 1998, Multivariate modeling of flood flows. Journal of Hydraulic Engineering, 124(2), 146–155.
Ghamghami, M. and Irannejad, P., 2019, An analysis of droughts in Iran during 1988–2017. SN Applied Sciences, 1(10), 1-21.
Intergovernmental Panel on Climate Change. 2007. The Fourth Assessment Report. Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., Hanson, C. E., http://www.cambridge.org/features/earth_environmental/climatechange/wg2. htm" t "_blank" Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. htm" t "_blank" Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Intergovernmental Panel on Climate Change, 2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge.
Joe, H., 1997, Multivariate Models and Dependence Concepts, Chapman & Hall, London.
Kao, S. C. and Govindaraju, R. S., 2010, A copula-historicald joint deficit index for droughts. Journal of Hydrology, 380, 121-134.
Leavitt, P. and Chen, G., 2005, Prairie Drought Limnology Project, University of Regina. Sustainable Agriculture in Western Canada: Planning for Droughts Using the Past. http://www.uregina.ca/biology/ faculty/leavitt/drought/drought1.htm. Accessed July 2005.
Liu, M., Xu, X., Sun, A.Y., Wang, K., Liu, W. and Zhang, X., 2014, Is southwestern China experiencing more frequent precipitation extremes? Environmental Research Letters, 9, 1-12.
Madadgar, S. and Moradkhani, H., 2013, Drought analysis under climate change using copula. Journal of Hydrologic Engenieering, 18 (7), 746–759.
Modarres, R., Sarhadi, A. and Burn, D. H., 2016, Changes of extreme drought and flood events in Iran. Global and Planetary Change, 144, 67-81.
Masoud, M. B., Khaliq, M. N. and Wheater, H. S., 2015, Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approach. Journal of Hydrology, 522, 452-466.
Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F. and Miglietta, M. M., 2020, Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorological Applications, 27(1), p.e1856.
Mirabbasi, R., Fakheri-Fard, A. and Dinpashoh, Y., 2012, Bivariate drought frequency analysis using the Copula method.Theoretical and Applied Climatology 108, 191–206.
MotevaliBashi naeini, E., Akhond Ali, A. M. Radmanesh, F., Sharifi, M. and Abedi Koupaei, J., 2019, Zoning Map of Drought Characteristics under Climate Change Scenariousing Copula Method in the Zayandeh Roud River Catchment, Irrigation Sciences and Engineering (JISE), 42 (1), 145-160. [persina]
Nelsen, R. B., 2007, An introduction to copulas. Springer. 3th edition, New York. 269 pp.
Pontes Filho, J. D., Souza Filho, F. D. A., Martins, E. S. P. R. and Studart, T. M. D. C., 2020, Copula-Historicald Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water, 12(3), 834.
Rahimi, L., Dehghani, A. A., Abdolhosseini, M. and Ghorbani, Kh., 2014, Flood Frequency Analysis Using Archimedean Copula Functions Historicald on Annual Maximum Series (Case Study:Arazkuseh Hydrometric Station in Golestan Province), Iranian Journal of Irrigation and Drainage No. 2, Vol. 8, May-June 2014, p. 353-365.
Reddy, M. J. and Ganguli, P., 2012, Application of copulas for derivation of drought severity –duration–frequency curves. Hydrological Process. 26, 1672–1685.
Salami, H., Shahnooshi, N. and Thomson, K. J., 2009, The economic impacts of drought on the economy of Iran: An integration of linear programming and macroeconometric modelling approaches. Ecological Economics, 68(4), 1032-1039.
Rossi, G., Benedini, M., Tsakiris, G. and Giakoumakis, S., 1992, On regional drought estimation and analysis. Water Resources Management, 6(4), 249–277.
Salvadori, G. and De Michele, C., 2007, On the use of copulas in hydrology: Theory and practice, Jouranl of Hydrologic Engneering, 12(4), 369–380.
Scholz, F. W. and Stephens, M. A., 1987, K-sample Anderson-Darling tests. Journal of the American Statistical Association, 82(399), 918– 924.
Schweizer, B. and Wolff, E. F., 1981, On Nonparametric Measures of Dependence of Random Variables. The Annals of Statistics, 9(4), 879-885.
Shahabfar, A. and Eitzinger, J., 2008, Spatial and temporal analysis of drought in Iran by using drought indices, European Meteorological Society (EMS), Proceedings of the 7th European Conference on Applied Climatology (ECAC) (EMS2008), Amsterdam, The Netherlands, SEP 29th–OCT 3rd, 2008.
Shi, H., Li, T. and Wei, J., 2017, Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region. Journal of Hydrology, 548, 322–332.
Shiau, J., 2003, Return period of bivariate distributed extreme hydrological events. Stochastic Environmental Research Risk Assessment, 17 (1–2), 42–57.
Shiau, J. T., 2006, Fitting drought duration and severity with two-dimensional copulas. Water Resources Management 20, 795–815.
Shiau, J. T., Feng, S. and Nadarajah, S., 2007, Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrological Processes, 21(16), 2157–2163.
Shiau, J.T. and Modarres, R., 2009, Copula-based drought severity-duration-frequency analysis in Iran. Meteorological Applications, 16, 481–489.
Sibuya, M., 1960, Bivariate extreme statistics. Annals of the Institute of Statistical Mathematics (Tokyo) 11, 195–210.
Sklar, A., 1959, Distribution functions of n Dimensions and Margins, Publications of the Institute of Statistics of the University of Paris 8, 229-231. (in French).
Song, S. and Singh, V. P., 2010, Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24, 783–805.
Song, S. and Singh, V. P., 2009, Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment, 24 (3), 425–444.
Taylor, K. E., Stouffer, R. J. and Meehl, G. A., 2012, An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society. 93, 485–498.
Touma, D., Ashfaq, M., Nayak, M. A., Kao, S. and Diffenbaugh, N. S., 2015, A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196–207.
Tsakiris, G. and Vangelis, H. J. E. W., 2005, Establishing a drought index incorporating evapotranspiration. European water, 9(10), 3-11.
United States Department of Agriculture, Foreign Agricultural Serrvice, 2008, IRAN: Wheat Production Declines Due to Drought, Commodity Intelligence Report, May9, 2008.
Vandenberghe, S.,Verhoest, N.E.C. and De Baets, B., 2010, Fitting bivariate copulas to the dependence structure between storm characteristics: A detailed analysis, historicald on 105 year 10 min rainfall. Water Resources Research,46, 1-17.
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I., 2010, A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
Won, J., Choi, J., Lee, O. and Kim, S., 2020, Copula-historicald Joint Drought Index using SPI and EDDI and its application to climate change. Science of the Total Environment, 744, p.140701.
Wong, G., Lambert, M. F., Leonard, M. and Metcalfe, A. V., 2010, Drought Analysis Using Trivariate Copulas Conditional on Climatic States. Journal of Hydrologic Engineering, 15(2), 129-141.
World Meteorological Organization, 2011, Weather extremes in a changing climate: hindsight on foresinght. WCDMP, 63, 11075-6.
Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y. and Shen, Y., 2015, Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. Journal of Hydrololgy. 526, 253–264.
Yevjevich, V., 1967, An objective approach to definitions and investigations of continental hydrologic droughts. Colorado State University.
Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P. and Bruneau, P., 1999, The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226(1-2), 88–100.
Yue, S., 2001., A Bivariate Extreme Value Distribution Applied to flood Frequency Analysis. Nordic Hydrology, 32(1), 49-64.
Zhang, L. and Singh, V. P. 2007, Gumbel-Hougaard copula for trivariate rainfall frequency analysis. Journal of Hydrologic Engineering. 12, 409–419.