طراحی و کاربرد عملی پالایه‌های رقمی در پردازش سیگنال‌های هواشناسی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه فیزیک، دانشگاه رازی، کرمانشاه، ایران

چکیده

روش­های پالایش رقمی برای جداسازی اطلاعات مجزا از سیگنال­های پیچیده هواشناسی بسیار مؤثر هستند. هدف از مطالعه حاضر طراحی پالایه‌های مناسب برای اعمال بر روی سیگنال­های هواشناسی دما و بارش به منظور هموارسازی، جداسازی مؤلفه­های بسامدی با اهمیت و حذف نوفه­های بسامد بالای بی­اهمیت است. طراحی این پالایه­ها، هم در حوزه زمان و هم در حوزه بسامد امکان­پذیر است که در این تحقیق طراحی و اعمال پالایه در حوزه زمان انجام شده است. نتایج اهمیت انتخاب پالایه مناسب در تحلیل محتوای طیفی موجود در سیگنال هواشناسی را نشان می­دهد. با پالایش سیگنال خام دما و بارش ماهانه طی دوره آماری 1979 تا 2021 در ایستگاه­های تهران و تبریز به مؤلفه­های فصلی، سالانه و بین سالی، ارتباط خطی بین این مؤلفه­ها به‌طور مجزا توسط ضریب همبستگی پیرسون مورد بررسی قرار گرفته و شباهت­ها و تفاوت­ها با هم مقایسه شده­اند. همچنین پالایه همینگ نسبت به پالایه میانگین متحرک ساده، عملکرد بهتری را در تضعیف نوسان­های گیبس در بخش­های جانبی پاسخ بسامدی پالایه نشان می­دهد. البته انتخاب تعداد وزن بیشتر در طراحی پالایه می­تواند در بهبود عملکرد پالایه اثرگذار باشد. این مسئله در زمانی که تعداد مؤلفه­های با اهمیت بیشتری در طیف بسامدیِ سیگنال هواشناسی وجود دارند، بایستی بیشتر مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

On the design and implementation of digital filters to process meteorological signals

نویسنده [English]

  • Abolfazl Neyestani
Assistant Professor, Department of Physics, Razi University, Kermanshah, Iran
چکیده [English]

Separation of different frequency bands in the complex and combined signals related to meteorological variables and also climatic indices requires the use of digital filtering methods. In this way, the information on different frequency bands can be organized and used. Given that these signals generally exhibit complex and nonlinear behavior, the use of mathematical filtering methods to identify their stochastic and periodic components leads to a better understanding of their behavior and helps modeling them as well. Therefore, the use of digital filters in order to recognize regular variabilities and facilitate statistical forecasting is one of the main goals in this field.
The design and implementation of these filters are possible both in time and frequency domains. In the frequency space, this process is performed based on the Fourier transform of the signals on the basis of the Fast Fourier Transform Algorithm (FFT), in which the variances of the desired signal can be extracted based on spectral analysis in different frequencies. By employing different types of non-recursive and recursive digital filters, which they can be implemented as low-pass, high-pass, band-pass, and band-stop, the related signal inthe  time domain for each state can be constructed, and the corresponding spectrum can be studied. The isolated spectrum can be related to the effect of a special phenomenon that influences the main signal. In addition, it is possible to remove high frequency components from the original signal, which include noises and may not contain important information. Moreover, the process of optimal smoothing the original signal can also be carried out.
In this study, different digital filters have been designed and then applied to meteorological data such as monthly surface temperature and precipitation. Two synoptic stations over Iran are selected and the related discrete monthly signals are constructed for 504 months during 1979-2021. Then, the moving average (MA) filter is used as a main filter, because it is the most common filter in digital signal processing (DSP), and also it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task such as reducing random noise while retaining a sharp step response. This makes it the premier filter for time domain encoded signals. The filtering process in this study is conducted to denoise the original signals, and also to examine seasonal, annual, and inter-annual components of the original signals. Since employed filters are digital, they must be applied to the initial discrete signal in the form of convolution with the finite impulse response (FIR) of the filter in the time domain, or they can be applied in the form of multiplication in the frequency domain based on discrete Fourier transform and then using of the inverse Fourier transform to recover the desired signal.
The results of this study show the importance of using digital filters in analyzing the spectral contents of meteorological signals. Furthermore, the Hamming filter, which is defined based on the cosine truncation and windowing, shows better performance in attenuating Gibbs oscillations in the lateral sidelobes of the filter frequency response than the simple moving average (MA) filter. In addition, the correlation analysis is carried out separately to indicate the linear relationships between different frequency components of the signals. The higher correlations are observed in annual frequency bands of the temperature and precipitation signals for the selected stations. It shows the effect of external climate forcing on both temperature and precipitation that is stemmed from the earth’s motion around the sun during a year. Obviously, choosing more weights in the design of a filter can improve the filtering performance, but it should be avoided to use more weights than necessary.

کلیدواژه‌ها [English]

  • Digital filter
  • Signal processing
  • Variability
  • Windowing
  • Meteorology
اشرفی، خ.، آزادی، م. و ثابت قدم، س.، 1390، بررسی تأثیر روش­های گوناگون آغازگری پالایه رقومی بر نتایج مدل WRF، مجله ژئوفیزیک ایران، 5 (1)، 33-16.
Carton, J. A. and Giese, B. S., 2008, A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136, 2999–3017. https://doi.org/10.1175/2007MWR1978.1.
De Oliviera, M. M. F., Ebecken, F. F., De Oliviera, J. L. F. and De Azevedo Santos, I., 2009, Neural network model to predict a storm surge. Journal of Appllied Meteorology and Climatology, 48, 143–155. https://doi.org/10.1175/2008JAMC1907.1.
Déqué, M. and Piedelievre, J. P., 1995, High resolution climate simulation over Europe. Climate Dynamics, 11, 321–339. https://doi.org/10.1007/BF00215735.
Duchon, C. E., 1979, Lanczos filtering in one and two dimensions. J Appl Meteorol, 18, 1016–1022. https://doi.org/10.1175/1520-0450(1979)018%3c1016:LFIOAT%3e2.0.CO;2.
Emery, W. J. and Thomson, R. E., 2014, Data Analysis Method in Physical Oceanography. Third edition, Elsevier B.V. 716 pp.
Fillion, L., Mitchell, H. L., Ritchie, H. and Staniforth, A., 1995, The impact of a digital filter finalization technique in a global data assimilation system. Tellus, 47A, 304– 323. https://doi.org/10.3402/tellusa.v47i3.11518.
Fesesr, F., 2006, Enhanced detectability of added value in limited-area model results separated into different spatial scales. Monthly Weather Review, 134, 2180-2190. https://doi.org/10.1175/MWR3183.1.
Gustafsson, N., 1992, Use of a digital filter as a weak constraint in variational data assimilation. Workshop on Variational Assimilation, with special emphasis on Three-dimensional Aspects, Shinfield Park, Reading.
Hoell, A., Barlow, M. and Saini, R., 2013, Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. Journal of Climate, 26, 8850–8867. https://doi.org/10.1175/JCLI-D-12-00306.1.
Huang, X-Y. and Lynch, P., 1993, Diabatic digital-filtering initialization: Application to the HIRLAM model. Monthly Weather Review, 121, 589–603. https://doi.org/10.1175/1520-0493(1993)121<0589:DDFIAT>2.0.CO;2.
Ichikawa, H. and Yasunari, T., 2008, Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. Journal of Climate, 21(12), 2852–2868. https://doi.org/10.1175/2007JCLI1784.1.
Lanzante, J. R., 1996, Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. International Journal of Climatology, 16, 1197–1226. https://doi.org/10.1002/(SICI)1097-0088(199611)16:11%3c1197::AID-JOC89%3e3.0.CO;2-L
Li, Y., Han, W., Wang, F., Zhang, L. and Duan, J., 2020, Vertical structure of the upper–Indian Ocean thermal variability. Journal of Climate. 33, 7233–7253. https://doi.org/10.1175/JCLI-D-19-0851.1.
Li, Y. Han, W., Zhang, L. and Wang, F., 2019, Decadal SST variability in the southeast Indian Ocean and its impact on regional climate. Journal of Climate, 32, 6299–6318. https://doi.org/10.1175/JCLI-D-19-0180.1.
Liu, Q., Li, T. and Zhou, W., 2021, Impacts of multi-timescale circulations on meridional moisture transport, Journal of Climate, 34(19), 8065-8085. https://doi.org/10.1175/JCLI-D-20-0126.1.
Lynne, P. A. and Fuerst, W., 1994, Introductory Digital Signal Prossesing with Computer Applications. John Wiley & Sons Ltd. 371 pp.
Koch, S. E., Golus, R. E. and Dorian, P. B., 1988, A mesoscale gravity wave event observed during CCOPE. Part II: Interactions between mesoscale convective systems and the antecedent waves. Monthly Weather Review, 116(12), 2545– 2569. https://doi.org/10.1175/1520-0493(1988)116<2545:AMGWEO>2.0.CO;2
Kousky, V. E. and Kayano, M. T., 1994, Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector. Journal of Climate, 7, 1131–1143. https://doi.org/10.1175/1520-0442(1994)007<1131:PMOOLR>2.0.CO;2.
Moon, J. Y., Wang, B., Lee, S. S. and Ha, K. J., 2018, An intraseasonal genesis potential index for tropical cyclones during Northern Hemisphere summer. Journal of Climate, 31(22), 9055– 9071. https://doi.org/10.1175/jcli-d-18-0515.1.
Nie, Y., Ren, H-L. and Zhang, Y., 2019, The role of extratropical air–sea interaction in the autumn subseasonal variability of the North Atlantic Oscillation. Journal of Climate, 32, 7697–7712. https://doi.org/10.1175/JCLI-D-19-0060.1.
Oppenheim, A. V. and Verghese, G. C., 2017, Signals, Systems & Inference. Pearson Education Limited, 604 pp.
Peckham, S. E., Smirnova, T. G., Benjamin, S. G., Brown, J. M. and Kenyon, J. S., 2016, Implementation of a digital filter initialization in the WRF model and its application in the Rapid Refresh. Monthly Weather Review, 144, 99-106. https://doi.org/10.1175/MWR-D-15-0219.1.
Pohl, B., Dieppois, B., Crétat, J., Lawler, D. and Rouault, M., 2018, From synoptic to interdecadal variability in southern african rainfall: toward a unified view across time scales. Journal of Climate, 31(15), 5845-5872. https://doi.org/10.1175/JCLI-D-17-0405.1.
Polavarapu, S., Tanguay, M. and Fillion, L., 2000, Four-dimensional variational data assimilation with digital filter initialization. Monthly Weather Review, 128, 2491– 2510. https://doi.org/10.1175/1520-0493(2000)128<2491:FDVDAW>2.0.CO;2.
Raymond, W. and Garder, A., 1991, A review of recursive and implicit filters. Monthly Weather Review, 119, 477–495. https://doi.org/10.1175/1520-0493(1991)119<0477:ARORAI>2.0.CO;2.
Wang, F., Tian, W., Xie, F., Zhang, J. and Han, Y., 2018, Effect of Madden–Julian Oscillation occurrence frequency on the interannual variability of northern hemisphere stratospheric wave activity in winter. Journal of Climate, 31, 5031–5049. https://doi.org/10.1175/JCLI-D-17-0476.1.
Wu, Z., Huang, N. E., Long , S. R. and Peng, C. K., 2007, On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences of the United States of America, 104(38), 14889–14894. https://doi.org/10.1073/pnas.0701020104