اثر گرمایش ناگهانی پوشن‌سپهر در تغییرات ارتفاع وردایست گرمایی در نیمکره شمالی(2020-1979)

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

چکیده

در این مقاله با استفاده از داده‌های دما و فشار وردایست گرمایی و دما در سطوح مختلف فشاری که از بایگانی مرکز ملی پیش‌بینی محیطی و پژوهش‌های جوی آمریکا گرفته شده است، کمیت بسامد شناوری برانت-وایسالا (N2) در ترازهای مختلف فشاری محاسبه شد. در ادامه میانگین مداری این کمیت‌ها در سه منطقه کلاهک قطبی، عرض‌های میانی و منطقه حاره به‌دست آمد و تغییرات ارتفاع وردایست گرمایی در طول دوره رخداد گرمایش ناگهانی پوشن‌سپهر بررسی شد.
نتایج نشان داد که در نوزده رخداد گرمایش انتخابی در دوره آماری 2020-1979، گرمایش ناگهانی پوشن‌سپهر سبب ایجاد بی‌هنجاری مثبت میانگین مداری دما و فشار وردایست شده است. از این‌رو در همه این موارد، گرمایش ناگهانی پوشن‌سپهر از طریق افزایش دمای وردایست و کاهش ارتفاع آن، سبب توسعه پوشن‌سپهر یا کاهش عمق وردسپهر شده است. به‌علاوه کاهش ارتفاع وردایست در منطقه کلاهک قطبی، بیشتر از منطقه عرض‌های میانی است. همچنین دیده شد که قبل از گرمایش ناگهانی پوشن‌سپهر، پایداری ایستایی (بی‌هنجاری مثبت میانگین مداری N2) در پوشن‌سپهر افزایش و در هنگام گرمایش کاهش (بی‌‌هنجاری منفی میانگین مداری N2) یافته است. این تغییرات نیز در کلاهک قطبی بیشتر از منطقه عرض‌های میانی است. این نتیجه نشان می‌دهد که ساختار پایداری ایستایی در پوشن‌سپهر پایین و اطراف وردایست در کلاهک قطبی بیشتر تحت‌تأثیر عامل ایجاد گرمایش ناگهانی پوشن‌سپهر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of sudden stratospheric warming on the height and temperature variations of thermal tropopause in northern hemisphere (1979-2020)

نویسنده [English]

  • Mohammad Moradi
Associate Professor, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

A sudden stratospheric warming (SSW) represent large scale perturbations of the polar winter stratosphere, which substantively influence the temperature and circulation of the middle atmosphere and also the contents of atmospheric species. SSW occurs mostly in middle and late winter and almost exclusively in the Northern Hemisphere. During an event, the polar stratospheric temperature increases by several tens of degree Celsius within a few days and eventually becomes warmer than that of the mid latitudes, reversing the climatological temperature gradient. At the same time, the prevailing westerly wind speed decreases rapidly and becomes easterly.
The tropopause is a transition layer between the troposphere and the stratosphere. The occasional exchange of air, water vapor, trace gases, and energy between the troposphere and the stratosphere occurs in this layer. Based on some concepts; two different tropopause in the name of thermal tropopause and dynamical tropopause are defined. The conventional definition is the thermal tropopause which is detected based on the mark disruption of the vertical temperature lapse rate. The thermal tropopause definition is based on the fact that the stratosphere is more stably stratified than the troposphere. The thermal tropopause is defined as the lowest level at which the lapse rate decreases to 2 K/km or less, provided that also the average lapse rate between this level and all higher levels within 2 km does not exceed 2 K/km. The original concept of the dynamical tropopause was based on the isentropic gradient of potential vorticity. The dynamical tropopause is typically determined in a thin layer with absolute PV values within 1 pvu and 4 pvu.
The vertical temperature stratification of the atmosphere plays a basic role in atmospheric motions. In this paper, the Brunt–Väisälä frequency (N2) value is used to detect the change of stratospheric static stability. In this work the NCEP/NCAR reanalysis daily data including temperature at different pressure levels (1000hPa-10hPa), the tropopuse temperature and pressure from 1th of January 1961 to 31th of December 2020 in northern hemisphere are used. The study region covers 0° to 357.5° geographical longitudes and 0°N to 90°N geographical latitudes. The northern hemisphere is divide into three 30° none overlapping latitudinal band width called as the tropical bands (0°N-27.5°N), the middle latitude bands (30°N-57.5°N) and polar bands (60°N-90°N) regions. First of all the potential temperature and Brunt-Väisälä frequency (N2) at different pressure levels are calculated; then the average zonal mean temperatures at 10hPa, the tropopause temperatures, the tropopuse pressures and the values of N2 in three former introduced regions are obtained. To represent the tropopuse's height variations during the sudden stratospheric warming, the daily anomaly of these parameters in the regions are calculated and analyzed.
The daily average mean zonal tropopause temperatures and pressure changes in the three meridian divided regions during eighteen major and one minor sudden stratospheric warming (SSW) events are analyzed in this study. The results show that all 19 SSW events in the statistical period of 1979-1920 are associated with positive anomaly of the zonal mean temperature and pressure of tropopuse along with increase of the tropopuse temperature and lowering its height which causes downward development of the stratosphere and thinning the depth of the troposphere. In addition, the tropopuse height reduction in the polar band region is greater than in the middle latitude band. It was also shown that, the static stability (positive anomaly) increment in the stratosphere started before the SSW and decreases during SSW (negative). These changes are greater in the polar cap band with respect to the middle latitudes band. This result reveals that the static stability structure in the lower stratosphere and upper troposphere in the polar cap are more affected by SSW with respect to other regions.

کلیدواژه‌ها [English]

  • Sudden stratospheric warming
  • Thermal tropopause
  • Troposphere
  • Brunt-Väisälä buoyancy frequency
  • Zonal mean
برهانی، ر.، 1397، مطالعه فراوانی و توزیع تاشدگی وردایست و تغییرات فصلی آن در سال‌های 2015-2013 با تأکید بر منطقه جنوب‌غرب آسیا، پایان‌نامه دکتری، موسسه ژئوفیزیک دانشگاه تهران.
برهانی، ر. و احمدی‌گیوی، ف.، 1397، تحلیل آماری- دینامیکی تاشدگی‌های وردایست منطقه جنوب‌غرب آسیا در سال‌های 2000 تا 2015، مجله ژئوفیزیک ایران، 12(2)، 127-146.
برهانی، ر.، احمدی‌گیوی، ف.، قادر، س. و محب‌الحجه، ع،. 1397، مطالعه فراوانی و توزیع تاشدگی وردایست و تغییرات فصلی آن در سال‌های 2015-2013 با تأکید بر منطقه جنوب‌غرب آسیا، مجله فیزیک زمین  و فضا، 44(3) ، 607-624.
برهانی، ن.، احمدی‌گیوی، ف.، محب‌الحجه، ع.، و میرزایی، م.، 1399، بررسی ارتباط تاوه قطبی پوشن سپهری با ساختار وردایست دینامیکی در منطقه جنوب‌غرب آسیا همراه با دو مطالعه موردی، مجله ژئوفیزیک ایران، 14(2)، 15-32.
مرادی، م.، 1399الف، ارتباط گرمایش ناگهانی پوشن‌سپهر نوع اصلی با تغییرات تاوه قطبی در دوره آماری 2019-1979.، مجله فیزیک زمین فضا، 46(3)، 620-603.
مرادی، م.، 1399ب، بررسی دوره زندگی گرمایش ناگهانی پوشن‌سپهر نوع اصلی در نیمکره شمالی، مجله جغرافیا و مخاطرات محیطی، 9(4)،122-107.
Ageyeva,V. Y., Gruzdev, A. N., Elokhov, A. S., Mokhov, I. I. and Zueva, N. E., 2017, Sudden Stratospheric Warmings: Statistical Character is tics and Influence on NO2 and O3 Total Contents: Atmospheric and Oceanic Physics, 53(5), 477–486.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T. and Match, A., 2015, Defining sudden stratospheric warmings, Meteor. Soc., 96, 1913–1928, https://doi.org/10.1175/ bams-d-13-00173.1,2015.
Bell, S. W. and Geller, M. A., 2008, Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models, J. Geophys. Res., 113, D05109, doi:10.1029/2007JD009022.
Birner, T., 2006, Fine-scale structure of the extratropical tropopause region, J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301.
Birner, T., 2010, Residual circulation and tropopause structure, J. Atmos. Sci., 67, 2582–2600.
Birner, T., Dörnbrack, A. and Schumann, U., 2002, How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29(14), 1700, doi:10.1029/2002GL015142.
Charlton, A. J. and Polvani, L., 2007, A new look at stratospheric sudden warmings. Part I. Climatology and modeling benchmarks: Journal of climate, 20, 449–469.
Domeisen, D. I. V. and Butler, A. H., 2020, Stratospheric drivers of extreme events at the Earth’s. Communication earth and environment, 1, 59, https://doi.org/10.1038/s43247-020-00060-z.
Gettelman, A. and Wang, T., 2015, Structural diagnostics of the tropopause inversion layer and its evolution, J. Geophys. Res. Atmos., 120,46–62, doi:10.1029/2014JD021846.
Grise, K., Thompson D. and Birner, T., 2010, A global survey of static stability in the stratosphere and upper troposphere, J. Clim., 23,2275–2292.
Hoskins, B. J., McIntyre, M. E. and Robertson, A. W., 1985, On the use and significance of isentropic potential vorticity maps, Q. J. R. Meteorol.Soc., 111, 877–946.
McInturff, R. M., 1978, Stratospheric warmings: Synoptic, dynamic and general-circulation aspects (Tech. Rep. No. 541, Ref. Publ. 1017). Available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780010687.pdf).
Randel, W. J. and Wu, F., 2010, The polar summer tropopause inversion layer, J. Atmos. Sci., 67, 2572–2581.
Rao, J., Ren, R., Chen, H., Yu, Y. and Zhou, Y., 2018, The stratospheric sudden warming event in February 2018 and its prediction by a climate system model, Journal of geophysics research atmospheric, 123, 13332–13345.
Wang, R., Tomikawa, Y., Nakamura, T., Huang, K., Zhang, S., Zhang, Y., Yang, H. and Hu, H., 2016, A mechanism to explain the variations of tropopause and tropopause inversion layer in the Arctic region during a sudden stratospheric warming in 2009, J. Geophys. Res. Atmos., 121, 11, 932–11, 945, doi:10.1002/2016JD024958.
World Meteorological Organization, 1957, Meteorology: A three dimensional science: Second session of the Commission for Aerology, WMO Bull., 4(4), 134–138.
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Lastovicka, J., Kozubek, M., Ward, W., Themens, D. R., Kirstoffffersen, S. and Alken, P., 2019, September 2019 Antarctic sudden stratospheric warming: quasi-6-day wave burst and ionospheric effects: Journal of geophysical research, Space physics, 123(5), 4094–4109.
Yoshida, K. and Yamazaki, K., 2010, Role of vertical eddy heat flux in the response of tropical tropopause temperature to changes in tropical sea surface temperature, J. Geophys. Res., 115, D01108, doi:10.1029/2009JD012783, 2010.
Zängl, G. and Hoinka, K. P., 2001, The tropopause in the polar regions, J. Clim., 14, 3117–3139.