پس‌پردازش خروجی مدل WRF به‌روش کوکریجینگ، برای کمیت‌های متوسط روزانه سرعت باد و رطوبت نسبی بر روی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

چکیده

پیش‌بینی­های متوسط روزانه سرعت باد و رطوبت نسبی در هر مکانی با دقت مناسب، در هواشناسی مهم است. خروجی مدل WRF با خطا همراه­ست، از این‌رو نیاز به ارتقاء کیفیت پیش‌بینی­های است. هدف این مطالعه تصحیح خطای پیش­بینی­های 24، 48 و 72 ساعته متوسط روزانه سرعت باد ده­متری و رطوبت نسبی در نقاط شبکه بر روی ایران است. خطای مدل طی دوره آموزش 5 و 14 روزه، برای نقاطی از شبکه که دارای داده مشاهداتی هستند محاسبه شد. این خطاها در نواحی هم­اقلیم، با استفاده از روش درون‌یابی کوکریجینگ، در سایر نقاط شبکه برآورد شد. بدین‌ترتیب پیش­بینی خام مدل برای نقاط فاقد داده مشاهداتی حفظ و تنها مقادیر برآورده شده خطا بر روی آنها اعمال می­شود. دوره آماری 15 ماه، از 1/11/2019 الی 1/2/2021 برای 560 ایستگاه مشاهداتی کشور در نظر گرفته شد. نتایج نشان داد خطای برونداد خام مدل در ماه­ها، مکان­ها و نواحی اقلیمی مختلف، توزیع یکنواختی ندارد. به‌طور متوسط نمره مهارت مدل، برای پیش­بینی رطوبت نسبی بیشتر از سرعت باد است. به‌طور کلی RMSE پیش­بینی­های سرعت باد و رطوبت نسبی برای کل کشور بعد از تصحیح، به‌ترتیب 13 و 18 درصد کاهش و نمره مهارت حداکثر تا 160 و 308 درصد افزایش می­یابد. مدل، سرعت باد را در اکثر مناطق کشور کمتر از مقدار مشاهده شده و رطوبت نسبی را بیشتر برآورد می­کند. روش تصحیح خطای 14‌‌روزه نسبت به‌روش 5‌‌روزه چندان سبب بهبود نمره مهارت مدل نشد و می­توان با روش 5‌‌روزه با هزینه محاسباتی کمتر به دقتی مشابه رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Post Processing of WRF Model Output by Cokriging Method for Daily Average Wind Speed and Relative Humidity on Iran

نویسندگان [English]

  • Mojtaba Shokouhi
  • Ebrahim Asadi Oskouei
  • Mohammad Reza Mohammadpour Penchah
Assistant Professor, Atmospheric Sciences and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

Weather forecasting and monitoring systems based on numerical weather forecasting models have been increasingly used to manage issues related to meteorology and agriculture. Using more accurate daily average wind speed (10m) and relative humidity forecasts can be helpful in this regard. But systematic and random errors in the model affect the accuracy of forecasts. In this study, the model errors during the 5 and 14 days training period in the same climate areas on the points of the network where the observations are available were calculated. Then the errors were generalized on all points of the network using the cokriging interpolation method. This preserves the model forecasts for other points of the network and only error values are applied to them. To better evaluate the model, the spatial and temporal distribution of daily average wind speed (10m) and relative humidity forecast errors were also investigated over Iran. Observed daily wind speed and relative humidity data from 560 meteorological stations for the period 1/11/2019 to 1/2/2021 were used to evaluate the WRF model performance. The WRF model was run daily at 12UTC, with a forecast time of 120 hours, and first 12 hours of each run was consider as the model spin-up time and was not used in errors calculation. In order to correct wind speed and relative humidity forecast errors for next three days (forecasts of 36, 60 and 84 hours), the forecasts for each day in the period of 11/1/ 2019 to 1/2/2021, was extracted from the model outputs. In order to evaluate the error correction method, the skill score index was used. The validation results of the error correction method showed that the absolute mean error value, correlation coefficient and RMSE improved after the error correction compared to results that were before the error correction, which showed that the error correction method can be used for other network points that did not contain observational data. In general after correction, the RMSE for wind speed and relative humidity forecasts could decrease by 13% and 18%, and the skill score could increase to a maximum of 160% and 308%, respectively. Value of correlation coefficient, after correcting the model error, was significantly increased, compared to the raw model output. In general skill score for the raw wind speed and relative humidity forecast for more than 50% of the days was more than -0.5 and -0.3, but after corrections were  increased to 0.2, 0.4 respectively. Without exception, all climatic regions after error correction have higher skill scores than before error correction, so that the model skill score for most climatic regions after error correction was reached above zero for more than 75% of the days. The results showed that errors of the model in different months, places and climatic zones did not have a uniform distribution. In general, the model underestimated the wind speed and overestimated the relative humidity in most areas. In general, the lowest skill scores for relative humidity forecasts occurred in the colder months of November to February in most climatic zones. The 14-day error correction method did not improve the modeling skill score much compared to the 5-day error correction method, and they acted almost similarly. Knowing the spatial and temporal distribution of model forecast error can be helpful for researchers to have an overview of the areas (and months) where the model forecast error can be high or low.

کلیدواژه‌ها [English]

  • Climatic Zones
  • Cokriging
  • Interpolation
  • Skill Score
  • Systematic Error
آزادی، م.، جعفری، س.، میرزایی، ا. و عربلی، پ.، 1387، پس‌پردازش برونداد مدل میان مقیاس MM5 برای دمای بیشینه و کمینه با استفاده از فیلتر کالمن. مجله فیزیک زمین و فضا، 34(1)، 45–61.
آزادی، م.، شیرغلامی، م.، حجام، س. و صحراِیان، ف.، 1390، پس‌پردازش برونداد مدل WRF برای بارش روزانه در ایران، مجله تحقیقات منابع آب، 7(3)، 81-71.
جابری، پ.، ثابت‌قدم، س. و سرمد، ق.، 1399، پیش‌بینی کاهش دید ناشی از مه و بارش در منطقه تهران با استفاده از مدل WRF. تحلیل فضایی مخاطرات محیطی 7، 107–124.
رحیمیان، م. و رشیدی، ی.، 1398، ارزیابی عملکرد مدل یکپارچه WRF/CALMET در توسعه میدان باد ورودی به مدل‌های کیفیت هوا. نشریه مهندسی عمران امیرکبیر، 51(5)، 979–992.
مرادی، م. و مرتضی پور، س.، 1397، پس‌پردازش خروجی مدل WRF به‌روش میانگین لغزان برای دما، دمای نقطه شبنم، دمای بیشینه و دمای کمینه، در ایستگاه هواشناسی فرودگاه رشت. هواشناسی و علوم جوّ، 1، 190–201.
مؤسسه تحقیقات خاک و آب، سازمان هواشناسی کشور، 1398، تهیه نقشه خرد اقلیم کشاورزی کشور، https://agro.irimo.ir
نصراصفهانی، م.، یزدان پناه، ح.ا. و نصراصفهانی، م.، 1398، ارزیابی مدل WRF برای پیش‌بینی دما و رخداد سرمازدگی در حوضۀ آبریز زاینده‏ رود. پژوهش‌های جغرافیای طبیعی 51، 163–182.
Box, G.E. and Meyer, R.D., 1986, An analysis for unreplicated fractional factorials. Technometrics, 28(1), 11-18.
Dars, G. H., Strong, C., Kochanski, A. K., Ansari, K. and Ali, S. H., 2020, The Spatiotemporal Variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations. Applied Sciences 10(5), 1765.
Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences 46, 3077–3107.
Gheyret, G., Mohammat, A. and Tang, Z., 2020, Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia. Journal of Mountain Science 17, 397–409.
Goovaerts, P., 1997, Geostatistics for natural resources evaluation. Oxford University Press on Demand.
Goovaerts, P., 1999, Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89, 1–45.
Hacker, J. P. and Rife, D. L., 2007, A Practical Approach to Sequential Estimation of Systematic Error on Near-Surface Mesoscale Grids. Weather and Forecasting 22, 1257–1273.
Heredia, M. B., Junquas, C., Prieur, C. and Condom, T., 2018, New Statistical Methods for Precipitation Bias Correction Applied to WRF Model Simulations in the Antisana Region, Ecuador. Journal of Hydrometeorology 19, 2021–2040.
Isaaks, E. H., and Srivastava, R. M., 1989, Applied Geostatistics. illustrate. Oxford University Press.
Janjić, Z. I., 1994, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review 122, 927–945.
Jeong, J. and Lee, S.-J., 2018, A Statistical Parameter Correction Technique for WRF Medium-Range Prediction of Near-Surface Temperature and Wind Speed Using Generalized Linear Model. Atmosphere. https://doi.org/10.3390/atmos9080291.
Karagulian, F., Temimi, M., Ghebreyesus, D., Weston, M., Kondapalli, N. K., Valappil, V. K., Aldababesh, A., Lyapustin, A., Chaouch, N. and Al Hammadi, F., 2019, Analysis of a severe dust storm and its impact on air quality conditions using WRF-Chem modeling, satellite imagery, and ground observations. Air Quality, Atmosphere & Health 12, 453–470.
Lin, Y.-L., Farley, R. D. and Orville, H. D., 1983, Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology and climatology 22, 1065–1092.
López Gómez, J., Troncoso Pastoriza, F., Granada Álvarez, E. and Eguía Oller, P., 2020, Comparison between Geostatistical Interpolation and Numerical Weather Model Predictions for Meteorological Conditions Mapping. Infrastructures, 5(2), 15.
Mass, C. F., Baars, J., Wedam, G., Grimit, E. and Steed, R., 2008, Removal of systematic model bias on a model grid. Weather and Forecasting 23, 438–459.
McCollor, D. and Stull, R., 2008, Hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain. Weather and forecasting 23, 131–144.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres 102, 16663–16682.
Mohammadi, S. A., Azadi, M. and Rahmani, M., 2017, Comparison of spatial interpolation methods for gridded bias removal in surface temperature forecasts. Journal of Meteorological Research 31, 791–799.
Robertson, G. P., 2008, GS+:“Geostatistics for the Environmental Sciences”, Gamma Design Software, Plainwell, Michigan USA. Pdf document available for free at: https://geostatistics. com/files/GSPlusUserGuide. pdf.
Samalot, A., Astitha, M., Yang, J. and Galanis, G., 2019, Combined Kalman Filter and Universal Kriging to Improve Storm Wind Speed Predictions for the Northeastern United States. Weather and Forecasting 34, 587–601.
Singh, J., Yeo, K., Liu, X., Hosseini, R. and Kalagnanam, J. R., 2015, Evaluation of WRF model seasonal forecasts for tropical region of Singapore. Advances in Science and Research 12, 69–72.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. and Powers, J. G., 2008, A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.
Solano, J. C., Montaño, T., Maldonado-Correa, J., Ordóñez, A. and Pesantez, M., 2021, Correlation between the wind speed and the elevation to evaluate the wind potential in the southern region of Ecuador. Energy Reports 7, 259–268.
Taylor, K. E., 2001, Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106, 7183–7192.
Termonia, P. and Deckmyn, A., 2007, Model-inspired predictors for model output statistics (MOS). Monthly weather review 135, 3496–3505.
Valappil, V. K., Temimi, M., Weston, M., Fonseca, R., Nelli, N. R., Thota, M. and Kumar, K. N., 2020, Assessing Bias correction methods in support of operational weather forecast in arid environment. Asia-Pacific Journal of Atmospheric Sciences 56, 333–347.
Wilks, D. S., 2011, Statistical methods in the atmospheric sciences (Vol. 100). Academic Press.
Yu, C., Zhao, T., Bai, Y., Zhang, L., Kong, S., Yu, X., He, J., Cui, C., Yang, J. and You, Y., 2020, Heavy air pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM 2.5 over China. Atmospheric Chemistry and Physics 20, 7217–7230.