مطالعه موردی تغییرات بارش ناشی از عملیات بارورسازی ابر در منطقه شمال غرب ایران با استفاده از مدل میان‌مقیاس WRF

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: moradi41291@gmail.com

2 نویسنده مسئول، پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: sohailajavanmard2018@gmail.com

3 گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران. رایانامه: sghader@ut.ac.ir

4 پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: azadi68@hotmail.com

5 گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران. رایانامه: gharaylo@ut.ac.ir

چکیده

در این مقاله اثر بارورسازی ابر سرد در یکی از عملیات‌های صورت گرفته توسط مرکز ملی بارورسازی ابرها در منطقه شمال غرب ایران بر بارش منطقه با استفاده از مدل میان‌مقیاس تحقیقات پیش‌بینی و وضع هوا (WRF) مورد بررسی قرار گرفته است. بدین منظور روابط فرایند خردفیزیک بارورسازی ابر پارامتره شد، سپس در طرح‌وارۀ خردفیزیک موریسون موجود در مدل WRF پیاده‌سازی شد. با شبیه‌سازی بارورسازی ابر توسط این مدل توسعه یافته، مقدار بارش تولید شده بعد از بارورسازی محاسبه شد و با مقدار بارش تخمین زده شده توسط مدل WRF در حالت کنترلی (بدون بارورسازی ابر) مقایسه شد. ازآنجاکه عمر ابر در زمان تزریق پیروپاترون‌ها و همچنین میزان آب اَبَر سرد ابر در زمان برخورد با پیروپاترون‌های مشتعل شده تأثیر بسزایی در اثر بارورسازی ابر دارد و در زمان عملیات، عمر ابر و میزان آب اَبَر سرد ابر در ایستگاه‌های مختلف متفاوت بوده است، بارورسازی در نقاط مختلف تأثیر متفاوتی داشت. عملیات بارورسازی موجب افزایش بارش باران در ایستگاه‌های باران‌سنجی ارومیه (3%)، اهر (27%)، سراب (7%)، پارس‌آباد (9%) واقع در منطقه شمال غرب ایران شد و این در حالی است که در برخی ایستگاه‌ها، بارورسازی موجب کاهش بارش 11%، 1%، 4%، 12% و 10% ای به ترتیب برای ایستگاه‌های مراغه، تبریز، مهاباد، سهند و خوی دو ساعت پس از بارورسازی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Precipitation changes due to cloud seeding operations by WRF meso-scale model

نویسندگان [English]

  • Shaghayegh Moradi 1
  • Sohaila Javanmard 2
  • Sarmad Ghader 3
  • Majid Azadi 4
  • Maryam Gharaylou 5
1 Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: moradi41291@gmail.com
2 Corresponding Author, Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: sohailajavanmard2018@gmail.com
3 Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: sghader@ut.ac.ir
4 Atmospheric Science and Meteorological Research Center (ASMERC), Tehran, Iran. E-mail: azadi68@hotmail.com
5 Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: gharaylo@ut.ac.ir
چکیده [English]

Numerous numerical experiments have been performed to cloud model seeding over the last two decades. Silver iodide nucleation has been parameterized using different methods in these studies. The results of these studies indicate that cloud seeding can change the distribution of precipitation in most cases. Moreover, most of these numerical simulations have been used only in the field of convective cloud seeding and are incapable of complete simulation of atmospheric conditions. For this purpose, the governing equations should be parameterized in three dimensions for the general case and be used in the appropriate model.
In this study, the effect of cloud seeding, whether increasing or decreasing in rainfall, has been studied. For this purpose, the WRF numerical model has been developed to simulate the cloud seeding. Since, it is virtually impossible to repeat experiments under similar meteorological conditions, a model that can simulate the effect of cloud seeding on microphysical processes and precipitation could avoid many speculations or inaccurate estimates.
The basic hypothesis of cloud seeding is based on the physical principle that at sub-freezing temperatures the equilibrium vapor pressure relative to ice is lower than the equilibrium vapor pressure relative to liquid water. Therefore, the saturated environment with 100% relative humidity relative to water (RHW = 100%) will be supersaturated relative to ice at temperatures below zero degrees Celsius (Pruppacher and Klett, 2010). As a result, in a cloud that is saturated with liquid water and composed of supercooled cloud water droplets, ice particles grow rapidly to form larger and heavier drops which could be fall as rain drops. In that environment, tiny, supercooled cloud droplets either grow in upward motion or evaporate to provide vapour for ice to grow. Therefore, in the cloud seeding with silver iodide, ice particles are expected to be produced and grow in the cold part of the cloud, and the liquid water of the cloud will be transformed into ice phase species more quickly.
The operational cloud seeding project has been carried out in the northwest area of Iran. At the time of operational project, the seeding target area was under the influence of the eastern Mediterranean low pressure center, this trough has caused the formation of divergence in its downstream in the upper levels of the atmosphere in the target area and has led to the formation of severe upward movements. Stable and thick clouds have formed in the area. Under the above mentioned environmental conditions, 44 pyropatrons of 4% silver iodide were fired at the target area by a seeding aircraft. Silver iodide particles measuring 0.1 to 1 mm are very effective in freezing nuclei. In this study, the effect of seeding is coded based on the model of Meyers et. al (1995) and Seto et. al (2011) by applying the seeding conditions into the Morrison scheme code within the WRF model and changing the number density and mixing ratio of cloud ice due to the silver iodide injected into the atmosphere.
By simulating the effect of cloud seeding, meteorological quantities, including precipitation under seeding conditions, are estimated by changing the Morrison microphysical scheme in the WRF model. The WRF numerical model was also run in control mode (without applying cloud seeding relations). By comparing the output rainfall of the numerical model in seeding mode with the output rainfall of the numerical model in control mode, the amount of cloud seeding effect was determined.
The results showed that the changes resulting from seeding in the studied cloud seeding operation were not favorable in all stations, and in some cases, the decrease in precipitation was seen 2 hours after seeding. This decrease in some stations, such as Maragheh, Tabriz, Sahand, and Khoy, starts from seeding time and continues until the end. But in a station like Sarab, although the rainfall decreases slightly at the beginning of cloud seeding, over time, it increases to 7% after two hours. While seeding in Parsabad, and Ahar stations resulted in precipitation enhancement by 3%, 9%, and 27% two hours after seeding, respectively.

کلیدواژه‌ها [English]

  • Cloud seeding Modelling
  • WRF Meso-scale Model
  • precipitation
  • cloud seeding operation
  • Morrison Scheme
  • Northwest of Iran
برادران، ر.؛ نیکخواه، م. و مریدی، م. (1393). گزارش ارزیابی پروژه‌های باروری ابرها در سال آبی 1391- 92 ایران مرکزی. مطالعات طرح پروژه ارزیابی، مرکز ملی تحقیقات و مطالعات باروری ابرها.
مرادی، ش.؛ جوانمرد، س.؛ قادر، س.؛ آزادی، م. و قرایلو، م. (1399). مؤثرترین طرح‌واره در بهبود عملکرد مدل WRF جهت پیش‌بینی بارش در منطقه شمال غرب ایران -مطالعه موردی. هواشناسی و علوم جو، 3(3)،188-200.
مجومرد م.؛ زارع م. و پورمحمدی س. (1395). ارزیابی نقش بارورسازی ابرها در افزایش استحصال آب در استان فارس با استفاده فنون سنجش از دور و سامانه اطلاعات جغرافیایی. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GIS در علوم منابع طبیعی)، 7(2)، 77-85.
Bluestein, H. B. (1992). Synoptic–Dynamic Meteorology in Midlatitudes. Oxford University Press, 431 pp.
Breed, D., Rasmussen, R., Weeks, C., Boe, B., & Deshler, T. (2014). Evaluating winter orographic cloud seeding: Design of the Wyoming weather modification pilot project (WWMPP). Journal of Applied Meteorology and Climatology, 53(2), 282–299, doi: 10.1175/JAMC-D-13-0128.1.
Chen, B., & Xiao, H. (2010). Silver iodide seeding impact on the microphysics and dynamics of convective clouds in the high plains. Atmos. Res., 96, 186–207, doi: 10.1016/j.atmosres.2009.04.001.
Chu, X., Geerts, B., Xue, L., & Pokharel, B. (2017a). A case study of cloud radar observations and large-eddy simulations of a shallow stratiform orographic cloud, and the impact of glaciogenic seeding. J. Appl. Meteor. Climatology, 56, 1285–1304, doi: 10.1175/JAMC-D-16-0364.1.
DeMott, P. J., Finnegan, W. G., & Grant, L. O. (1983). An Application of Chemical Kinetic Theory and Methodology to Characterize the Ice Nucleating Properties of Aerosols Used for Weather Modification. Journal of Applied Meteorology and Climatology, 22(7), 1190-1203. https://doi.org/10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2.
Deshler, T., & Reynolds, D. W. (1990). The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J. Appl. Meteor., 29, 477–488. https://doi.org/10.1175/1520-0450(1990)029<0477:TPOSEI>2.0.CO;2.
Geresdi, I., Xue, L., & Rasmussen, R. (2017). Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Two-Dimensional Approach. Journal of Applied Meteorology and Climatology, 56(5), 1443-1462. https://journals.ametsoc.org/view/journals/apme/56/5/jamc-d-16-0045.1.xml.
Geresdi, I., Xue, L., Sarkadi, N., & Rasmussen, R. (2020). Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Three-Dimensional Simulation of Real Cases. Journal of Applied Meteorology and Climatology, 59(9), 1537-1555. doi: 10.1175/JAMC-D-19-0278.1.
Guo, X., Zheng, G., & and Jin, D. (2006). A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide. Atmos. Res., 79, 183–226.
Hobbs, P. V. (1975). The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seed- ing. Part III: Case studies of the effects of seeding. J. Appl. Meteor., 14, 819–858, https://www.jstor.org/stable/26176600.
Hobbs, P. V., Lyons, J. H., Locatelli, J. D., Biswas, K. R., Radke, L. F., Weiss Sr, R. R., & Rangno, A. L. (1981). Radar detection of cloud-seeding effects. Science, 213, 1250–1252, doi: 10.1126/science.213.4513.1250.
Javanmard, S., & Pirhayati, M. K. (2012). AgI cloud seeding modeling for hail suppression of cold clouds. Journal of Geography and Geology, 4(2), 81. https://doi.org/10.5539/jgg.v4n2
Seto, J., Tomine, K., Wakimizu, K., & Nishiyama, K. (2011). Artificial cloud seeding using liquid carbon dioxide: comparisons of experimental data and numerical analyses. J. Appl. Meteor. Climatol., 50, 1417-1431, https://www.jstor.org/stable/26174102.
Changnon Jr, S. A., Farhar, B. C., & Swanson, E. R. (1978). Hail Suppression and Society: Assessment of future hail suppression technology reveals its development should be sizable or ignored. Science, 200(4340), 387-394.
Marcolli, C., Nagare, B., Welti, A., & Lohmann, U. (2016). Ice nucleation efficiency of AgI: review and new insights, Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016.
Meyers, M. P., Demott, P. J., & Cotton, W. R. (1995). A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor., 34, 834–846. https://www.jstor.org/stable/26187222.
Morrison, H., Curry, J. A., & Khvorostyanov, V. I. (2005). A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62(6), 1665-1677, doi: 10.1175/JAS3446.1.
Pokharel, B., & Geerts, B. (2016). A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description. Atmos. Res., 182, 269–281, doi: 10.1016/ j.atmosres.2016.08.008.
Pokharel, B., Geerts, B., & Jing, X. (2018). The impact of ground-based glaciogenic seeding on a shallow stratiform cloud over the Sierra Madre in Wyoming: A multi-sensor study of the 3 March 2012 case. Atmos. Res., 214, 74–90, doi: 10.1016/j.atmosres.2018.07.013.
Pokharel, B., Geerts, B., Jing, X., Friedrich, K., Ikeda, K., & Rasmussen, R. (2017). A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis. Atmos. Res., 183, 42–57, doi: 10.1016/j.atmosres.2016.08.018.
Pruppacher, H. R., & Klett, J. D. (2010). Microphysics of Clouds and Precipitation. Springer, 852 pp.
Rauber, R. M., Geerts, B., Xue, L., French, J., Friedrich, K., Rasmussen, R. M., Tessendorf, S. A., Blestrud, D. R., Kunkel, M. L., & Parkinson, S. (2019). Wintertime Orographic Cloud Seeding—A Review. Journal of Applied Meteorology and Climatology, 58(10), 2117-2140. Retrieved Dec 18, 2021, doi: 10.1175/JAMC-D-18-0341.1.
Wu, X., Yan, N., Yu, H., Niu, S., Meng, F., Liu, W., & Sun, H. (2018). Advances in the evaluation of cloud seeding: Statistical evidence for the enhancement of precipitation. Earth and Space Science, 5, 425–439. doi: 10.1029/2018EA000424.
Xue, L., Teller, A., Rasmussen, R. M., Geresdi, I., & Liu, X. (2012). Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci., 69, 1994–2010. doi:10.1175/ JAS-D-11-098.1.
Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013a). Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatology, 52, 1458–1476. doi:10.1175/ JAMC-D-12-0149.1.
Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013b). Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatology, 52, 1433–1457, doi:10.1175/JAMC-D-12-0148.1.
Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013c). AgI cloud seeding effects as seen in WRF simulations. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatology, 52, 1433–1457, doi:10.1175/JAMC-D-12-0148.1.
Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013d). AgI cloud seeding effects as seen in WRF simulations. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatology, 52, 1458–1476, doi: 10.1175/JAMC-D-12-0149.1.
Xue, L., Tessendorf, S., & Geerts, B., (2016a). A Case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatology, 55, 445-464, doi: 10.1175/JAMC-D-15-0115.1.
Xue, L., Chu, X., Rasmussen, R., Breed, D., & Geerts, B. (2016b). A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatology, 55, 445–464, doi:10.1175/JAMC-D-15-0115.1.
Xue, L., Edwards, R., Huggins, A., Lou, X., Rasmussen, R., Tessendorf, S., Holbrook, P., Blestrud, D., Kunkel, M., Glenn, B., & Parkinson, S. (2017). WRF large-eddy simulations of chemical tracer deposition and seeding effect over complex terrain from ground- and aircraft-based AgI genera- tors. Atmos. Res., 190, 89–103. doi: 10.1016/ j.atmosres.2017.02.013.
Yin, Y., Levin, Z., Reisin, T. G., & Tzivion, S., (2000). Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteor., 39, 1460–1472, https://www.jstor.org/stable/26184345.