الگوهای گردشی جو و دوره‌های فرین تر و خشک فصل زمستان در جنوب‌شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 دانشیار، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 استاد، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

4 استادیار، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

منطقه فراخشک و خشک جنوب­شرق ایران، نمونه بارزی از یک منطقه متأثر از رویدادهای فرین اقلیمی به مانند سیل و خشکسالی می­باشد. در این مطالعه، با هدف درک علل و فرایندهای منجر به رخداد دوره­های فرین زمستانه در منطقه جنوب­شرق ایران، وردایی‌های زمانی فضایی دوره­های فرین تر و خشک زمستانه و ارتباط رخداد آنها با گردش مقیاس سینوپتیک جو بررسی شده است. داده­های شبکه­ای مقیاس ماهانه از شاخص استاندارد شده بارش-تبخیر و تعرق (SPEI01) و داده­های میانگین روزانه میدان‌های ارتفاع ژئوپتانسیل تراز 500 هکتوپاسکالی (HGT500) از داده­های شبکه­ای بازکاوی‌شده NCEP-NCAR به‌ترتیب برای برای ارزیابی دوره­های فرین تر و خشک و تیپ­های گردشی جو زمستانی در یک دوره 55 ساله (2015-1960) استفاده شده است. ارزش‌های خارج از محدوده 5/1+ تا 5/1- از شاخص مزبور به‌ترتیب اساس تعیین دوره­های تر و خشک فرین لحاظ شده­اند. با اجرای یک تحلیل مؤلفه اصلی (PCA) با دوران واریماکس بر روی ماتریس همبستگی از حالت تجزیه S داده‌های SPEI01، سه منطقه فرعی با وردایی اقلیمی مستقل شناسایی شدند. سپس، الگوهای گردش جو روزانه مقیاس سینوپتیک به تیپ گردشی (CTs) دوازده‌گانه بر اساس اجرای تکنیک تحلیل خوشه­ای غیرسلسله‌مراتبی k-means به پیروی از استبان و همکاران (2005)، تقسیم شده­اند. ارتباط بین CTs با دوره­های تر و خشک فرین در منطقه جنوب­شرق ایران با اعمال شاخص عملکرد (PI) بر روی داده­های بارش روزانه ایستگاه‌های نماینده مناطق فرعی بررسی شده است. یافته­ها بیانگر یک ارتباط معنی­دار بین رخداد CTs و دوره­های فرین تر و خشک در ایستگاه‌های نماینده مناطق فرعی می­باشد. تیپ گردشی CT1+ سهم غالب در رخداد دوره­های تر فرین و تیپ­های گردشی CT1- و CT2+ در رخداد دوره­های فرین خشک در زیرمنطقه شرق و جنوب­شرق (ایستگاه زاهدان) دارا می­باشد. در زیرمنطقه ساحلی جنوبی، تیپ­های گردشی CT2- سهم غالب در رخداد دوره­های فرین تر و تیپ­های گردشی CT4- و CT6- در رخداد دوره­های فرین خشک دارا می­باشند. سهم تیپ گردشی CT5- در رخداد دوره­های تر فرین و تیپ گردشی CT1+ در زیرمنطقه شمال و شمال­غربی بیشینه می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Atmospheric circulation types and winter extreme dry/wet spells in the southeast district of Iran

نویسندگان [English]

  • Mohadeseh Vazirimehr 1
  • Mohsen Hamidianpour 2
  • Mahmood Khosravi 3
  • hamid Nazaripour 4
1 M.Sc. Graduated, Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
2 Associate Professor, Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
3 Professor, Department of Physical Geography, Faculty of Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
4 Assistant Professor, Department of Physical Geography, Faculty of Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In arid environments, extreme wet and dry periods are considered a serious threat to human societies. These periods affect the agricultural sector, transportation networks, vegetation, the environment, water resources, and the sustainability of human societies. Extra-arid and arid regions of southeastern Iran are good examples of an area affected by extreme climate events hazards, such as, floods and droughts. This study, to better understanding the causes and processes leading to extremely dry and wet episodes in southeastern Iran, investigates the space and time variability of winter dry/wet events and their associated large-scale atmospheric driving circulations. The data of this research are of two categories. Monthly gridded data from 1-month standardized precipitation-evapotranspiration index (SPEI01) and daily average geopotential field data of 500 hPa (HGT500) retrieved from NCEP/NCAR Reanalysis data over a period of 55 years (1960-2015) have been used to evaluate the dry and wet spells and circulation types (CTs) of winter atmosphere, respectively. December to March (DJFM) are selected as winter months and data for 55 winters are extracted through MATLAB programming facilities in the southeastern part of Iran. 168 gridpoints cover the southeastern part of Iran. The western and northern boundaries of the study area are bounded by the meridian 55 degrees east and 32 degrees north. Finally, a new database with the arrangement  was formed and became the basis for further processing. Of course, the database of the variable height of geopotential is different and has a matrix with dimensions . Extreme wet and dry periods have been identified based on SPEI01 values outside the range [+1.5, -1.5], respectively. By applying the Principal Component Analysis (PCA) with Varimax rotation on S-mode analysis and correlation matrix of the SPEI01 field, three sub-regions of independent climatic variability are identified. Large-scale daily atmospheric circulation patterns are then classified into twelve circulation types (CTs) by applying PCA to the 500 hPa geopotential height fields and non-iterative K-means clustering technique to the retained PCA scores, followed by Esteban et al. (2005). The linkage between daily CTs and winter, dry/wet spells in the region are investigated by applying the performance index (PI) to the daily precipitation data of three representative stations of the identified sub-regions. Results show a significant relationship between the frequencies of occurrence of the identified CTs and of dry/wet spells at the three representative stations, in extra-arid and arid regions of southeastern Iran. 6 circulation patterns (CT) were identified for the study area, each of which has a negative phase and a positive phase, and a total of 12 patterns were identified. According to the results of the performance index, CT1+ pattern with deep Trough and ridge pattern on the Mediterranean Sea and the Caspian Sea, respectively, has a large share in providing above-average rainfall (P1> 1) in the east and southeast (Zahedan station). But this phase is related to the dry periods of the study area. Unlike the second type (CT2), its positive phase (+CT2) is associated with dry periods and its negative phase (-CT2) is associated with wet periods.

کلیدواژه‌ها [English]

  • PCA
  • atmospheric circulation patterns
  • K-means clustering
  • SPEI
  • PI
رضیئی، ط.، عزیزی، ق.، محمدی، ح. و خوش‌اخلاق، ف.، 1389، الگوهای روزانه گردش جو زمستانه تراز 500 هکتوپاسکال بر روی ایران و خاورمیانه، مجله پژوهش‌های جغرافیای طبیعی، 42(4)، 34-17.
رضیئی، ط.، 1396، منطقه‌بندی اقلیمی ایران به روش کوپن-گایگر و بررسی جابه‌جایی مناطق اقلیمی کشور در سدۀ بیستم، مجله فیزیک زمین و فضا، 43(2)، 439-419.
شیراوند، ه.، اسعدی اسکویی، ا. و حسینی، س. ا.، 1399، واکاوری آماری و همدیدی سامانه بارشی منجر به سیلاب دی‌ماه 1398 در جنوب و جنوب‌شرق کشور، مجله پژوهش‌های اقلیم‌شناسی، 13(49)، 162-149.
مرادی، م. و رنجبر سعادت‌آبادی، ع.، 1399، بررسی همدیدی سیلاب سیستان و بلوچستان و برف سنگین گیلان در زمستان 1398، مجله جغرافیا و مخاطرات محیطی، 9(3)، 243-227.
مفیدی، ع.، زرین، آ. و کارخانه، م.، 1393، بررسی الگوی گردش جوّ در طول دوره‌‌های خشک و مرطوب در سواحل جنوبی دریای خزر، مجله ژئوفیزیک ایران، 8(1)، 176-140.
نظری‌پور، ح.، 1394، توسعه یک شاخص ترکیبی چندمتغیره بر پایه تحلیل مؤلفه اصلی برای ارزیابی خشک‌سالی‌های آب -هواشناختی در جنوب‌شرق ایران (مطالعه موردی: حوضه سد پیشین)، مجله جغرافیا و مخاطرات محیطی، 4(15)، 91-111.
Alijani, B., 2002, Variations of 500 hPa flow patterns over Iranand surrounding areas and their relationship with the climate of Iran. Theoretical and applied climatology, 72(1), 41-54.
Barry, RG. and Carleton, AM., 2001, Synoptic and Dynamic Climatology, Routledge: London.
Birkeland, KW. and Mock, C.J., 2001, The major snow avalanche cycle of February 1986 in the western United States. Natural Hazards, 24(1), 75-95.
Cattell, R.B., 1966, The scree test for the number of factors. Multivariate behavioral research, 1(2), 245-276.
Corte‐Real, J., Qian, B. and Xu, H., 1998, Regional climate change in Portugal: precipitation variability associated with large‐scale atmospheric circulation. International Journal of Climatology: A Journal of the Royal Meteorological Society, 18(6), 619-635.
Esteban, P., Jones, P.D., Martín‐Vide, J. and Mases, M., 2005, Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. International Journal of Climatology, 25(3), 319-329.
Esteban, P., Martin‐Vide, J. and Mases, M., 2006, Daily atmospheric circulation catalogue for Western Europe using multivariate techniques. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(11), 1501-1515.
Hair, JF., Anderson, RE., Tatham, RL. and Black, WC., 1998, Multivariate Data Analysis, 5th edn. Prentice-Hall International: Englewood Cliffs, New Jersey, USA.
Huth, R., 1996, An intercomparison of computer‐assisted circulation classification methods. International Journal of Climatology: A Journal of the Royal Meteorological Society, 16(8), 893-922.
Jollife, IT., 1986, Principal Component Analysis. Springer-Verlage: New York.
Kaiser, H.F., 1960, The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151.
Khoshakhlagh, F., Ouji, R. and Jafarbeglou, M., 2008, A synoptic study on seasonal patterns of wet and dry spells in midwest of Iran. Desert, 13(2), 89-103.
Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R. and Fiorino, M., 2001, The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation, Bulletin of the American Meteorological Society, 82(2), 247-268. Retrieved Nov 19, 2022, from.
Lana, X., Martínez, M.D., Burgueño, A., Serra, C., Martín‐Vide, J. and Gómez, L., 2006, Distributions of long dry spells in the Iberian Peninsula, years 1951–1990. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(14), 1999-2021.
Li, X., He, B., Quan, X., Liao, Z. and Bai, X., 2015, Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in southwest China from 1982–2012. Remote Sensing, 7(8), 10917-10937.
Li, Z., Li, Y., Shi, X. and Li, J., 2017, The characteristics of wet and dry spells for the diverse climate in China. Global and Planetary Change, 149, 14-19.
North, G.R., Bell, TL., Cahalan, RF. and Moeng, FJ., 1982, Sampling errors in the estimation of empirical orthogonal functions. Monthly weather review, 110(7), 699-706.
Plaut, G., Schuepbach, E. and Doctor, M., 2001, Heavy precipitation events over a few Alpine sub-regions and the links with large-scale circulation, 1971-1995. Climate Research, 17(3), 285-302.
Polong, F., Chen, H., Sun, S. and Ongoma, V., 2019, Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin, Kenya. Theoretical and Applied Climatology, 138(1), 777-792.
Rahimi, J., Ebrahimpour, M. and Khalili, A., 2013, Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and applied climatology, 112(3), 409-418.
Raziei, T., Bordi, I., Pereira, LS., Corte‐Real, J. and Santos, JA., 2012a, Relationship between daily atmospheric circulation types and winter dry/wet spells in western Iran. International Journal of Climatology, 32(7), 1056-1068.
Raziei, T., Mofidi, A., Santos, J. A. and Bordi, I., 2012b, Spatial patterns and regimes of daily precipitation in Iran in relation to large‐scale atmospheric circulation. International Journal of Climatology, 32(8), 1226-1237.
Raziei, T., Bordi, I., Santos, J. A. and Mofidi, A., 2013, Atmospheric circulation types and winter daily precipitation in Iran. International Journal of Climatology, 33(9), 2232-2246.
Raziei, T., 2018a, An analysis of daily and monthly precipitation seasonality and regimes in Iran and the associated changes in 1951–2014. Theoretical and applied climatology, 134(3), 913-934.
Raziei, T., 2018b, A precipitation regionalization and regime for Iran based on multivariate analysis. Theoretical and applied climatology, 131(3), 1429-1448.
Richman, MB., 1986, Rotation of principal components. Journal of Climatology, 6, 293-335.
Romero, R., Sumner, G., Ramis, C. and Genovés, A., 1999, A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. International Journal of Climatology: A Journal of the Royal Meteorological Society, 19(7), 765-785.
Santos, JA., Corte‐Real, J. and Leite, SM., 2005, Weather regimes and their connection to the winter rainfall in Portugal. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(1), 33-50.
Singh, N. and Ranade, A., 2010, The wet and dry spells across India during 1951–2007. Journal of Hydrometeorology, 11(1), 26-45.
Todorov, H., Fournier, D. and Gerber, S., 2018, Principal components analysis: theory and application to gene expression data analysis. Genomics and Computational Biology, 4(2), e100041-e100041.
Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I., 2010, A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
Yarnal, B., Comrie, A. C., Frakes, B. and Brown, D. P., 2001, Developments and prospects in synoptic climatology. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(15), 1923-1950.
Zhang, X., Wang, XL. and Corte‐Real, J., 1997, On the relationships between daily circulation patterns and precipitation in Portugal. Journal of Geophysical Research: Atmospheres, 102(D12), 13495-13507.