تفسیر کیفی داده‌های مغناطیس‌‌سنجی هوابرد منطـقه بصیـران (اسـتان خـراسان جنوبی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی معدن، دانشکده مهندسی معدن، عمران و شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران

2 استادیار، گروه مهندسی معدن، دانشکده مهندسی معدن، عمران و شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران

3 دانشجوی دکتری، پژوهشکده علوم پایه کاربردی، دانشگاه شهید بهشتی، تهران، ایران

4 دانش‌آموخته کارشناسی ارشد، گروه مهندسی معدن، دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

پژوهش حاضر به ارائه نتایج حاصل از انجام مطالعات مغناطیس‌سنجی هوابرد در منطقه بصیران واقع در جنوب شهرستان بیرجند پرداخته است. این منطقه طبق گزارش نقشه‌های زمین‌شناسی دارای اندیس‌ها و پتانسیل‌های بالای معدنی همچون مس قلعه زری، آهن بیشه و طلای هیرد بوده و از نظر مطالعات معدنی نیز از اهمیت ویژه‌ای برخوردار است. در سال 1383 عملیات برداشت داده‌های مغناطیس‌سنجی هوایی در محدود وسیعی درحدود 1500 کیلومتر مربع و با هدف شناسایی نواحی جدید حاوی پتانسیل‌های معدنی به ویژه کانسارهای فلزی انجام گرفته است. جهت انجام تفسیر کیفی این داده‌ها از انواع فیلترهای ریاضی و ژئوفیزیکی متداول مانند انتقال به قطب، ادامه فراسو، تهیه داده شبه گرانی و سیگنال تحلیلی استفاده شده ‌است. با مقایسه روند تغییرات بی‌هنجاری‌ها در نقشه‌های مختلف، وجود حداقل پنج منبع عمده ایجاد کننده بی‌هنجاری مغناطیسی عمیق با منشأهایی از قبیل توده‌های آذرین نفوذی در محدوده قابل مـشاهده و تفسیر می‌باشد. این منابع در نقشه‌های رسم شده به‌ویژه در نقشه‌های انتقال به قطب، شبه گرانی، سیگنال تحلیلی و نقشه‌های ادامه فراسوی 300، 500 و 1000 متر با وضوح خوبی در گستره‌های عمقی مختلف آشکار شده است. نتایج این تحقیق شامل معرفی پنج ناحیه در مقیاس کوچکتر محلی است که دارای بی‌هنجاری عمیق مغناطیسی در منطقه بصیران می‌باشد و می‌تواند در کنار سایر پتانسیل‌های شناخته شده موجود از قبیل معدن مس، آهن، طلا و منگنز جهت انجام مطالعات اکتشافی زمینی برای فعالان حوزه اکتشاف معدن مفید و سودمند باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Qualitative interpretation of aeromagnetic data of Basiran area (South Khorasan Province)

نویسندگان [English]

  • Hossein Tavassoli Torbati 1
  • Gholam Abbas Fanaee Kheirabad 2
  • Mohammad Mohammadzade Moghaddam 3
  • Amin Karimi Kalvarzi 4
1 M.Sc. Student, Department of Mining Engineering, Faculty of Mining, Civil and Chemical Engineering, Birjand University of Technology, Birjand, Iran
2 Assistant Professor, Department of Mining Engineering, Faculty of Mining, Civil and Chemical Engineering, Birjand University of Technology, Birjand, Iran
3 Ph.D. Student, Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
4 M.Sc. Graduated, Department of Mining Engineering, Faculty of Mining, Amir-Kabir University of Technology, Tehran, Iran
چکیده [English]

Aeromagnetic data provide useful information for delineating magnetic basement, structural patterns, tectonics, and thermal status of the survey area. The current study presents the results of airborne magnetic studies in Basiran area (South Khorasan province) 100 km southwest of Birjand, that is well-known for its great mineral potential such as gold, copper, iron, manganese and silver. Appearance of Ghale-Zari, Bishe and the other active mines in the area indicate the promising mine potential of the region. Basiran area in the classification of the structural zones of Iran is located in the Lut Block. The Lut Block stretched over 900 km in the north-south direction and nearly 200 km in the east-west direction and bounded by the Nayband and Nehbandan faults. The lithology of the Lut Block is mainly lavas and pyroclastic rocks, as well as sub-volcanic rocks of Eocene-Oligocene ages eras. Volcanic rocks display a scattered pattern since they formed during the subduction to post-collisional stages between the Arabian and Asian plates. In 2005, a high-resolution airborne magnetic data collection (with flight line distances of 250 meters) was carried out in Basiran area of approximately 1500 km2 by the Geological Survey of Iran (GSI). The purpose of this survey is the study of the patterns of magnetic fields and their relationship with geological structures, especially iron bodies and to create a suitable exploration database for further investigations. The collected raw aeromagnetic data set are processed by applying Diurnal Variation correction and IGRF removal using Geosoft Oassis Montaj software. Processing of airborne data need applying other technical corrections such as lag compensation, topography and leveling in order to prepare the residual magnetic intensity data or TMA map (Total Magnetic Anomaly Map). In order to have a qualitative interpretation, we need to prepare all relevant maps to follow the anomaly variations. Then geophysical and mathematical filters are sequentially applied that routinely are the reduction-to-the pole (RTP) and upward continuation. The RTP map removes the latitude dependence of the magnetic fields and upward continuation maps bring and show the effect of the magnetic sources at depth. Based on the other studies results, in literature review, there are at least five main sources of anomalies in the Basiran area, which may be related to several magnetic and geological structures at depth. These sources are clearly at 300 m, 500 m and 1000 meters upward continuation maps. As the main results, this paper emphasizes on the key role of the aeromagnetic study to understand the relation between magnetic anomalies and the subsurface structures. Basiran area is a high potential area for mineral exploration that includes copper, gold, iron, and manganese that is made it valuable for many researchers that are active in mining exploration.

کلیدواژه‌ها [English]

  • Aeromagnetic
  • qualitative interpretation
  • Basiran
  • Birjand
توسلی تربتی، ح.، 1399، مدل‌سازی دوبعدی داده‌های مغناطیسی هوابرد برای شناسایی توده‌های مغناطیسی مرتبط با کانی زایی در منطقه بصیران واقع در جنوب شهرستان بیرجند، استان خراسان جنوبی، پایان‌نامه کارشناسی ارشد اکتشاف معدن، دانشگاه صنعتی بیرجند.
فنایی خیرآباد، غ.، حسین‌زاده گویا، ن.، نمکی، ل.، و صداقت، ب.، 1387، پردازش داده‌های مغناطیس هوایی منطقه بصیران با استفاده از اسپلاین مکعبی، مجله فیزیک زمین و فضا، 34(2)، 43-51.
محمدزاده مقدم، م.، فنائی خیرآباد، غ.، میرزائی، س.، و عابدی، م.، 1398، تفسیر داده‌های مغناطیس هوایی به منظور تخمین عمق پی‌سنگ مغناطیسی و گسل‌های پنهان در منطقه بصیران، خراسان جنوبی، فصلنامه زمین‌شناسی ایران، 51، 11-128.
نخعی، م.، حیدریان شهری، م.، کریم پور، م.، مظاهری، س.، و زرین‌کوب، م.، 1392، پردازش و تفسیر کیفی داده‌های مغناطیسی در کانسار سنگ آهن بیشه، پنجمین همایش انجمن زمین‌شناسی اقتصادی ایران، 20 و 21 شهریور.
Arkani-Hamed J., 2007, Differential reduction to the pole: Revisited: Geophysical Journal International, 72(1), L13–L20.
Blackely, R. J., 1996, Potential threory in gravity and magnetic applications, New York: Cambridge.
Bott, M.H.P., Smith, R.A. and Stacey, R.A., 1966, Estimation of the direction of magnetization of a body causing a magnetic anomaly using a pseudo gravity transformation, Geophysics, 31, 803–811.
Fairhead, J.D., 2015, Advances in Gravity and Magnetic processing and Interpretation, EAGE Publication, 338 Pages.
Gunn, P.J., 1975, Linear transformations of gravity and magnetic fields. Geophysical Prospecting, 23, 300–312.
Hinze, W. J., Von Frese, R. B. and SAAD, A. H., 2013, Gravity and Magnetic exploration, New York: Cambridge.
MacLeod, I.N., Jones, K. and Dai, T.F., 1993, 3D Analytic signal in the interpretation of total magnetic field data at low magnetic latitudes exploration. Geophysics, 24(4), 679–688.
Nabighian, M.N., 1974, Additional comments on the Analytic signal of two dimensional magnetic bodies with polygonal cross-section. Geophysics 39, 85–92.
Nabighian, M.N., 1984, Towards a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49(6), 78G–786.
Roest, W.R., Verhoef, J. and Pilkington, M., 1992, Magnetic interpretation using the 3D Analytic signal. Geophysics, 57(1), 116–125.
Stocklin, J. and Nabavi, M., 1972, Tectonic Map of Iran, Geological Survey of Iran.
Nabighian, M.N, 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation, Geophysics, 37, 507-517.