پیش‌یابی کمیت‌های دما و بارش در دوره آماری 2080-2021 در استان هرمزگان جهت استخراج خشکسالی و ریزمقیاس نمایی آن توسط نرم‌افزار LARS-WG

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس، اداره هواشناسی استان هرمزگان، بندرعباس، ایران

2 رییس اداره شبکه دیدبانی و هشدار جوی، اداره هواشناسی استان هرمزگان، بندرعباس، ایران

3 رییس گروه تحقیقات هواشناسی کاربردی اداره هواشناسی استان هرمزگان، بندرعباس، ایران

4 استادیار، پژوهشگاه هواشناسی و علوم جوّ، تهران، ایران

چکیده

در این پژوهش از روش‌های ریزمقیاس­نمایی آماری به‌منظور پیش­یابی و شبیه­سازی کمیت­های اقلیمی برای تعیین شاخص­های خشکسالی اقلیم آینده استان هرمزگان با استفاده از پنج مدل گردش عمومی جو شامل مدل‌های CanESM2، HadGEM2-ES، MPI-ESM-MR، GFDL-CM3 و MIROC5 با سناریوهای RCP2.6، RCP4.5 و  RCP8.5قابل‌دسترس در نرم­افزار LARS-WG6 در سه دوره آماری 2040-2021، 2060-2041 و 2080-2061 استفاده شد. قابلیت ریزمقیاس­نمایی با استفاده از شاخص‌های ضریب تعیین، میانگین مربعات خطا (MSE) و مجذور مربعات خطا (RMSE) ارزیابی شد. ارزیابی شبیه­سازی دمای کمینه و بیشینه توسط مدل­های LARS-WG6، در کلاس ارزیابی بسیار مناسب تا مناسب و شبیه­سازی بارش در کلاس ارزیابی مناسب تا متوسط طبقه‌بندی شدند. نتایج بررسی‌های تغییرات کمیت­های اقلیمی با مدل‌‌های گزارش پنجم در تمام دوره‌ها حاکی از افزایش دماهای کمینه و بیشینه در تمام این مدل‌ها در سناریوهای مختلف اقلیمی در دوره­های آینده است، و هرچه از دوره پایه فاصله بگیریم، میزان تغییرات دما افزایش می‌یابد. میزان افزایش در دمای کمینه در اکثر مدل‌ها نسبت به دمای بیشینه در طی 20 تا 80 سال آینده بیشتر بوده و بیانگر آن است که افزایش در دمای استان هرمزگان بیشتر متأثر از افزایش در دمای کمینه می­باشد. اغلب مدل­ها افزایش میزان بارندگی در هر سه دوره را نشان می­دهند به گونه­ای که میانگین تمام مدل­ها در هر یک از سه سناریو افزایش بارندگی به‌ویژه در شرق و شمال استان هرمزگان (مناطق مرتفع) را پیش­بینی می­کنند. در اکثر ایستگاه­های هواشناسی استان هرمزگان بیشترین افزایش بارندگی در مدل CanESM2 با سناریو RCP8.5 و در دوره 2080-2061 پیش‌بینی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of temperature and precipitation in the statistical period 2021-2080 in Hormozgan province for drought extraction and its downscaling by LARS-WG software

نویسندگان [English]

  • Mohammad Roohollah Nejad 1
  • Vahid Salamati Hormozi 2
  • Raheleh Ramezani 3
  • Sakineh Khansalari 4
1 Expert, Hormozgan province Meteorological Administration, Bandar Abbas, Iran
2 Head of Atmospheric observation and Warning Network, Hormozgan province Meteorological Administration, Bandar Abbas, Iran
3 Head of Applied Meteorological Research Group, Hormozgan province Meteorological Administration, Bandar Abbas, Iran
4 Assistant Professor, Atmospheric Sciences and Meteorological Research Center (ASMERC), Tehran, Iran
چکیده [English]

Precipitation is one of the most important meteorological quantities that its decrease compared to normal amounts in a period of time causes drought. In this study, statistical microscale methods were used to project and simulate climatic quantities to determine future drought indices of Hormozgan province using the LARS-WG model. For this study, climatic data of synoptic stations of Hormozgan province as well as 5 models of general atmospheric circulation including CanESM2, HadGEM-ES2, MPI-ESM-MR, GFDL-CM3 and MIROC5 with RCP2.6, RCP4.5 and RCP8.5 scenarios were used. The capability of the fifth report models was evaluated using coefficient of determination, mean square error (MSE) and Root-Mean-Square Error (RMSE). The results of evaluating the data generated in the LARS-WG model with climatic data showed that the highest coefficients of determination were related to the parameters of minimum and maximum temperatures (99%) and precipitation (94%), respectively. The results of studies of changes in climate parameters with the models of the fifth report in all periods indicate an increase in minimum and maximum temperatures in all these models in different climatic scenarios in future periods, and as we move away from the base period 2040-2021, the rate of temperature changes increases. The rate of increase in minimum temperature in most models is higher than the annual maximum temperature over the next 20 to 80 years and indicates that the increase in temperature in Hormozgan province will be more affected by the increase in minimum temperature. Examination of the results of different climatic scenarios shows that according to the optimistic scenario, precipitation changes in Hormozgan province are increasing and this increase in precipitation in the east and northeast will be more than the base period. Accordingly, the largest increase will occur in the period 2060-2041, which will be greater in the east and northeast (especially the city of Rudan). In this scenario, the least amount of rainfall occurs in the central areas and islands and part of the west of the province. According to the optimistic and moderate scenarios, precipitation changes in Hormozgan province are increasing and this increase in precipitation in the east and northeast is more than yhat of the base period. Also in the center and north of the province the precipitation will be less. The highest increase in precipitation in the period 2060-2041 by 4-64 mm varies in the stations of the province and this increase is in the east and northeast (Rudan city) by 64 mm. In this scenario, the least amount of rain will occur in the central and northern areas and part of the west of the province in Parsian city. According to the pessimistic scenario, the precipitation changes in Hormozgan province are increasing and this increase in precipitation in the east and northeast will be more than that of the base period. Accordingly, the highest rain increase in the period 2080-2061 is 13-90 mm in the stations of the province and this increase is 90 mm in the east and northeast (Rudan city). In this scenario, the least amount of rain will occur in Bandar Khamir city and the islands and part of the west of the province. In this scenario, the amount of rainfall in Bastak city increases significantly. In general, most of the models show an increase in rainfall in all three periods, so that the average of all models in each of the three scenarios of increased rainfall, especially in the east and north of Hormozgan province (highlands). In most meteorological stations of Hormozgan province, the highest increase in rainfall is predicted by CanESM2 model with RCP8.5 scenario and in the period 2080-2061.

کلیدواژه‌ها [English]

  • Drought
  • Climatic scenarios
  • LARS-WG6 software
  • Hormozgan province
  • model of general atmospheric circulation
تابان، ح.، ظهرابی، ن. و نیکبخت شهبازی، ع. ر.، 1397، ارزیابی عدم‌قطعیت­های مدل­های گردش کلی در تخمین بارش و رواناب حوضه دز علیا تحت تاثیر تغییر اقلیم، مجله فیزیک زمین و فضا، 44(1)، 102-89.
جعفری‌گدنه، م.، سلاجقه، ع. و حقیقی، پ.، 1399، پیش‌بینی مقایسه‌ای بارش و دمای شهرستان کرمان با استفاده از مدل‌های LARS-WG6، مجله هیدرو اکولوژی، 7(2)، 529-538.
جوانمرد، س. و آسیایی، م.،1383، فرهنگ اصطلاحات هواشناسی و اقلیم شناسی، انتشارات سخن گستر.
جهانگیر، م. ح.، جهان پناه، م. و ابوالقاسمی، م.، 1399، پیش‌بینی وضعیت خشکسالی برای دوره‌‌های آتی با استفاده از مدل LARS-WG (مطالعه موردی: ایستگاه شیراز)، محیط زیست و مهندسی آب، 6(1)، 69-82.
رمضانی‌پور، م.، 1397، پیش‌بینی اثر تغییر آب‌وهوایی بر شاخص‌‌های اقلیم-کشاورزی و عملکرد برنج مطالعه موردی: مناطق شمال ایران، برنامه ریزی منطقه‌ای، 8(32)، 69-80.
سلامتی هرمزی، و.، مزیدی، ا. و بلالی کمیزی، ع. ا.، 1400، بررسی اثرات سناریوهای تغییرات اقلیمی در پیش‌بینی دما و بارش با استفاده از مدل LARS-WG (مطالعه موردی: بندرعباس)، فصلنامه علمی علوم و فنون آبخاکی، 2(2)، 1-16.
صبوحی، ر.، بارانی، ح.، خداقلی، م.، عابدی سروستانی، ا. و طهماسبی، ا.، 1398، بررسی روند گذشته و پیش‌بینی متغیرهای اقلیمی در منطقه سمیرم، مهندسی و مدیریت آبخیز، 128-112.
عباسی، ف.، بابائیان، ا.، گلی مختاری، ل. و ملبوسی، ش، 1389، ارزیابی تأثیر تغییر اقلیم بر دما و بارش ایران در دهه‌های آینده، با کمک مدل SCENGEN-MAGICC، مجله پژوهش‌‌های جغرافیایی، 42، (72)، 91-109.
علوی نیا، ح. و زارعی، م.، 1399، واکاوی روند تغییرات فرین‌های دما تحت تأثیر سناریوهای آینده به‌منظور ارزیابی نوسانات اقلیمی (مطالعه‌ی موردی: ایستگاه‌های همدیدی سنندج و سقز)، فصلنامه مطالعات جغرافیایی مناطق خشک، 11(41)، 16-1.
کریمی، و.، حبیب نژاد روشن، م. و آبه‌کار، ع. ج.، 1390، بررسی شاخص‌های خشکسالی هواشناسی در ایستگاه‌های سینوپتیک مازندران، فصلنامه علمی پژوهشی مهندسی آبیاری و آب، 2(5)، 15-25.
کمالی، غ.ع.، نوحی، ک. و عسگری، ا.، 1388، هواشناسی کاربردی، انتشارات پژوهشکده هواشناسی و رجاء تهران.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W.G. and Merryfield, W. J, 2011, Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett, 38: L05805. https://doi.org/10.1029/2010GL046270.
Babaei Fini, A., Qasemi, A. and Fatahi, A., 2014, Investigating the Impact of Climate Change on the Trend of Iran Earth's Limit Rainfall Profiles, Journal of Spatial Analysis of Environmental Hazards, 1(3), 103-85, [Persian].
Bayatvarkeshi, M., Zhang, B., Fasihi, R., Adnan, R. M., Kisi, O. and Yuan, X., 2020, Investigation into the Effects of Climate Change on Reference Evapotranspiration Using the HadCM3 and LARS-WG, Water, 12(3), 666.‏
Chisanga, C. B., Phiri, E. and Chinene, V., 2020, Reliability of Rain-Fed Maize Yield Simulation Using LARS-WG Derived CMIP5 Climate Data at Mount Makulu, Zambia, journal of Agricultural Science, 12(11), 275-289.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A. and Woodward, S., 2011, Development and evaluation of an earth-system model – HadGEM2, Geosci. Model Dev., 4: 1051, 2011–1075, https:// doi.org/10.5194/gmd-4-1051-2011.
Donner, L., Wyman, B., Hemler, R., Horowitz, L., Ming, Y., Zhao, M., Golaz, J., Ginoux, P., Lin, S., Schwarzkopf, M., Austin, J., Alaka, G., Cooke, W., Delworth, T., Freidenreich, S., Gordon, C., Griffies, S., Held, I., Hurlin, W., Klein, S., Knutson, T., Langenhorst, A., Lee, H., Lin, Y., Magi, B., Malyshev, S., Milly, P., Naik, V., Nath, M., Pincus, R., Ploshay, J., Ramaswamy, V., Seman, C., Shevliakova, E., Sirutis, J., Stern, W., Stouffer, R., Wilson, R., Winton, M., Wittenberg, A. and Zeng, F., 2011, The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3, J. Clim., 24(13), 3484–3519, https://doi.org/10.1175/2011jcli3955.1.
Karimi, M. and Nabizadeh, A, 2018, Assessment of climate change impacts on climate parameters of Urmia Lake basin during 2011-2040 years by using LARS-WG model, Journal of Geography and Planing, 22(65), https://www.sid.ir/en/journal/ViewPaper.aspx?id=755851.
Mohammadzadeh, N., Amiri, B. J., Endergoli, L. E. and Karimi, S., 2019, Coupling Tank Model and Lars-Weather Generator in Assessments of the Impacts of Climate Change on Water Resources, Slovak Journal of Civil Engineering, 27(1), 14-24.
Sha, J., Li, X. and Wang, Z. L., 2019, Estimation of future climate change in cold weather areas with the LARS-WG model under CMIP5 scenarios, Theoretical and Applied Climatology, 137(3-4), 3027-3039.‏
Shagega, F. P., Munishi, S. E. and Kongo, V. M., 2019, Prediction of future climate in Ngerengere river catchment, Tanzania, Physics and Chemistry of the Earth, Parts A/B/C. 112. 200-209.‏
Vallam, P. and Qin, X. S., 2018, Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes, Theoretical and Applied Climatology, 134(1-2), 669-688.‏
Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H. and Tatebe HKimoto, M., 2010, Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity, J. Clim., 23, 6312–6335, https://doi.org/10. 1175/2010jcli3679.1.
Zanchettin, D., Rubino, A., Matei, D., Bothe, O. and Jungclaus, J., 2013, Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium, Clim. Dyn., 40, 1301–1318, https://doi.org/10.1007/s00382-012-1361-9.