Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109-6131.
Amiri-Simkooei, A. (2016). Non-negative least-squares variance component estimation with application to GPS time series. Journal of Geodesy, 90(5), 451-466.
Amiri-Simkooei, A., Hosseini-Asl, M., Asgari, J., & Zangeneh-Nejad, F. (2019). Offset detection in GPS position time series using multivariate analysis. GPS solutions, 23(1), 13.
Amiri-Simkooei, A., Mohammadloo, T., & Argus, D. (2017). Multivariate analysis of GPS position time series of JPL second reprocessing campaign. Journal of Geodesy, 91(6), 685-704.
An, J., Zhang, B., Ai, S., Wang, Z., & Feng, Y. (2021). Evaluation of vertical crustal movements and sea level changes around Greenland from GPS and tide gauge observations. Acta Oceanologica Sinica, 40(1), 4-12.
Barzaghi, R., & Borghi, A. (2018). Theory of second order stationary random processes applied to GPS coordinate time-series. GPS Solutions, 22(3), 86.
Borghi, A., Aoudia, A., Riva, R. E., & Barzaghi, R. (2009). GPS monitoring and earthquake prediction: a success story towards a useful integration. Tectonophysics, 465(1-4), 177-189.
Bevis, M., & Brown, A. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, 88(3), 283-311.
Birhanu, Y., Williams, S., Bendick, R., & Fisseha, S. (2018). Time dependence of noise characteristics in continuous GPS observations from East Africa. Journal of African Earth Sciences, 144, 83-89.
Blewitt, G., Hammond, W. C., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, 1-2.
Bogusz, J., Gruszczynski, M., Figurski, M., & Klos, A. (2015). Spatio-temporal filtering for determination of common mode error in regional GNSS networks. Open Geosciences, 7(1).
Bogusz, J., & Klos, A. (2016). On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS solutions, 20(4), 655-664.
Bogusz, J., Klos, A., & Pokonieczny, K. (2019). Optimal Strategy of a GPS Position Time Series Analysis for Post-Glacial Rebound Investigation in Europe. Remote Sensing, 11(10), 1209.
Bruni, S., Zerbini, S., Raicich, F., Errico, M., & Santi, E. (2014). Detecting discontinuities in GNSS coordinate time series with STARS: case study, the Bologna and Medicina GPS sites. Journal of Geodesy, 88(12), 1203-1214.
Dehghani, M., Valadan Zoej, M. J., Entezam, I., Mansourian, A., & Saatchi, S. (2009). InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophysical Journal International, 178(1), 47-56.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A.W., Ostini, L., Petrie, E., Roggero, M., & Teferle, F.N. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, 118(5), 2397-2407.
Graham, S. E., Loveless, J. P., & Meade, B. J. (2018). Global plate motions and earthquake cycle effects. Geochemistry, Geophysics, Geosystems, 19(7), 2032-2048.
Gruszczynski, M., Klos, A., & Bogusz, J. (2016). Orthogonal transformation in extracting of common mode errors from continuous GPS networks. Acta Geodynamica et Geomaterialia, 13(3), 291-298.
Hammond, W. C., Blewitt, G., Kreemer, C., & Nerem, R. S. (2021). GPS imaging of global vertical land motion for studies of sea level rise. Journal of Geophysical Research: Solid Earth, 126(7), e2021JB022355.
He, X., Hua, X., Yu, K., Xuan, W., Lu, T., Zhang, W., & Chen, X. (2015). Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering. Advances in Space Research, 55(5), 1316-1327.
He, X., Montillet, J.-P., Fernandes, R., Bos, M., Yu, K., Hua, X., & Jiang, W. (2017). Review of current GPS methodologies for producing accurate time series and their error sources. Journal of Geodynamics, 106, 12-29.
Herring, T., King, R., & McClusky, S. (2015). Introduction to GAMIT/GLOBK, release 10.6. Mass. Inst. of Technol., Cambridge.
https://ncc.gov.ir/
Jiang, W., Ma, J., Li, Z., Zhou, X., & Zhou, B. (2018). Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California. Advances in Space Research, 61(10), 2521-2530.
Khalkhali, S. A. G., Ardalan, A. A., & Karimi, R. (2021). A time series analysis of permanent GNSS stations in the northwest network of Iran. Annals of Geophysics, 64(2), GD218-GD218.
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S.A., Walpersdorf, A., Hosseini, S., Tavakoli, P., & Aghamohammadi, A. (2019). An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophysical Journal International, 217(2), 832-843.
Khorrami, M., Abrishami, S., & Maghsoudi, Y. (2020). Mashhad subsidence monitoring by interferometric synthetic aperture radar technique. Amirkabir Journal of Civil Engineering, 51(6), 1187-1204.
Klos, A., & Bogusz, J. (2017). An evaluation of velocity estimates with a correlated noise: case study of IGS ITRF2014 European stations. Acta Geodynamica et Geomaterialia, 14(3), 255-265.
Klos, A., Bos, M. S., & Bogusz, J. (2018a). Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS solutions, 22(1), 21.
Klos, A., Olivares, G., Teferle, F. N., Hunegnaw, A., & Bogusz, J. (2018b). On the combined effect of periodic signals and colored noise on velocity uncertainties. GPS solutions, 22(1), 1.
Li, W., Li, F., Zhang, S., Lei, J., Zhang, Q., & Yuan, L. (2019). Spatiotemporal Filtering and Noise Analysis for Regional GNSS Network in Antarctica Using Independent Component Analysis. Remote Sensing, 11(4), 386.
Mao, A., Harrison, C. G., & Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth, 104(B2), 2797-2816.
Motagh, M., Walter, T. R., Sharifi, M. A., Fielding, E., Schenk, A., Anderssohn, J., & Zschau, J. (2008). Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35(16).
Mousavi, Z., Walpersdorf, A., Walker, R.T., Tavakoli, F., Pathier, E., Nankali, H.R.E.A., Nilfouroushan, F., & Djamour, Y. (2013). Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region. Earth and Planetary Science Letters, 377, 287-298.
Nikolaidis, R. (2004). Observation of geodetic and seismic deformation with the Global Positioning System.
Ostanciaux, E., Husson, L., Choblet, G., Robin, C., & Pedoja, K. (2012). Present-day trends of vertical ground motion along the coast lines. Earth-Science Reviews, 110(1-4), 74-92.
Ray, J., Altamimi, Z., Collilieux, X., & van Dam, T. (2008). Anomalous harmonics in the spectra of GPS position estimates. GPS solutions, 12(1), 55-64.
Riddell, A. R. (2021). Vertical land motion of the Australian plate (Doctoral dissertation, University of Tasmania).
Santamaría‐Gómez, A., Bouin, M. N., Collilieux, X., & Wöppelmann, G. (2011). Correlated errors in GPS position time series: Implications for velocity estimates. Journal of Geophysical Research: Solid Earth, (116(B1.
Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., & Minderhoud, P. S. (2021). Measuring, modelling and projecting coastal land subsidence. Nature Reviews Earth & Environment, 2(1), 40-58.
Teferle, F. N., Williams, S. D., Kierulf, H. P., Bingley, R. M., & Plag, H.-P. (2008). A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth, Parts A/B/C, 33(3-4), 205-216.
Tobita, M. (2016). Combined logarithmic and exponential function model for fitting postseismic GNSS time series after 2011 Tohoku-Oki earthquake. Earth, Planets and Space, 68(1), 1-12.
Tourani, M., Caglayan, A., Saber, R., Isik, V., & Chitea, F. (2021). Determination of land subsidence in gorgan plain with insar method (Golestan, NE Iran). book: geoscience for society, education and environment.
Varbla, S., Ågren, J., Ellmann, A., & Poutanen, M. (2022). Treatment of tide gauge time series and marine GNSS measurements for vertical land motion with relevance to the implementation of the Baltic Sea Chart Datum 2000. Remote Sensing, 14(4), 920.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., . . . Bayer, R. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), 381-398.
Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., Djamour, Y., & Nankali, H. (2014). Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data. Journal of Geophysical Research: Solid Earth, 119(2), 1359-1383.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102(B8), 18057-18070.
Williams, S.D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller, M., & Johnson, D.J. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109(B3).
Zhu, Z., Zhou, X., Deng, L., Wang, K., & Zhou, B. (2017). Quantitative analysis of geophysical sources of common mode component in CMONOC GPS coordinate time series. Advances in Space Research, 60(12), 2896-2909.