Ali, A., Younas, M., Ullah, M., Hussain, M., Toqeer, M., Samuel, A., & Khan, A. (2019). Characterization of secondary reservoir potential via seismic inversion and attribute analysis : A case study. Journal of Petroleum Science and Engineering, 178(September 2018), 272–293. https://doi.org/10.1016/j.petrol.2019.03.039.
Anifowose, F., Adeniye, S., Abdulraheem, A., & Al-shuhail, A. (2016). Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models. Journal of Petroleum Science and Engineering, 145, 230–237. https://doi.org/10.1016/j.petrol.2016.05.019.
Azevedo, L., Narciso, J., Nunes, R., & Soares, A. (2020). Geostatistical Seismic Inversion with Self-Updating of Local Probability Distributions. Mathematical Geosciences. https://doi.org/10.1007/s11004-020-09896-9.
Farfour, M., Yoon, W. J., & Kim, J. (2015). Seismic attributes and AI inversion in interpretation of complex hydrocarbon reservoirs. Journal of Applied Geophysics, 114, 68–80. https://doi.org/10.1016/j.jappgeo.2015.01.008.
Ghadami, N., Rasaei, M. R., Hejri, S., Sajedian, A., & Afsari, K. (2015). Consistent porosity – permeability modeling , reservoir rock typing and hydraulic fl ow unitization in a giant carbonate reservoir. Journal of Petroleum Science and Engineering, 131, 58–69. https://doi.org/10.1016/j.petrol.2015.04.017.
Gholami, A., & Reza, H. (2017). Estimation of porosity from seismic attributes using a committee model with bat-inspired optimization algorithm. Journal of Petroleum Science and Engineering, 152(May 2016), 238–249. https://doi.org/10.1016/j.petrol.2017.03.013.
Grana, D., Fjeldstad, T., & Omre, H. (2017). Bayesian Gaussian Mixture Linear Inversion for Geophysical Inverse Problems. Mathematical Geosciences. https://doi.org/10.1007/s11004-016-9671-9.
Kadkhodaie-ilkhchi, R., Moussavi-harami, R., & Rezaee, R. (2014). Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range fi eld in the Perth Basin , Western Australia. Journal of Natural Gas Science and Engineering, 21, 1073–1083. https://doi.org/10.1016/j.jngse.2014.10.027.
Kassab, M. A., & Weller, A. (2011). Porosity estimation from compressional wave velocity : A study based on Egyptian sandstone formations. Journal of Petroleum Science and Engineering, 78(2), 310–315. https://doi.org/10.1016/j.petrol.2011.06.011.
Kheirollahi, H., Shad Manaman, N., Leisi, A. (2023). Robust estimation of shear wave velocity in a carbonate oil reservoir from conventional well logging data using machine learning algorithms. Journal of Applied Geophysics, 211, 104971. https://doi.org/10.1016/j.jappgeo.2023.104971.
Khoshdel, H., & Riahi, M. A. (2011). Multi attribute transform and neural network in porosity estimation of an offshore oil field — A case study. Journal of Petroleum Science and Engineering, 78(3–4), 740–747. https://doi.org/10.1016/j.petrol.2011.08.016
Leisi, A., & Falahat, R. (2021). Investigation of Some Porosity Estimation Methods Using Seismic Data in One of the South Iranian Oil Fields. Petroleum Research, 31(4). https://doi.org/10.22078/pr.2021.4438.3007)
Leisi, A., Kheirollahi, H., & Shadmanaman, N. (2022). Investigation and comparison of conventional methods for estimating shear wave velocity from well logging data in one of the sandstone reservoirs in southern Iran. Iranian Gournal of Geophysics. https://doi.org/https://doi.org/10.30499/IJG.2022.320098.1385.
Leisi, A., & Saberi, M. R. (2022). Petrophysical parameters estimation of a reservoir using integration of wells and seismic data : a sandstone case study. Earth Science Informatics, 1–16. https://doi.org/https://doi.org/10.1007/s12145-022-00902-8.
Liang, J., Wang, H., Blum, M. J., & Ji, X. (2019). Demarcation and correlation of stratigraphic sequationuences using wavelet and Hilbert-Huang transforms : A case study from Niger Delta Basin. Journal of Petroleum Science and Engineering, 182(August), 106329. https://doi.org/10.1016/j.petrol.2019.106329.
Lindberg, D. V., & Grana, D. (2015). Petro-Elastic Log-Facies Classification Using the Expectation – Maximization Algorithm and Hidden Markov Models. Mathematical Geosciences, 47(6), 719–752. https://doi.org/10.1007/s11004-015-9604-z.
Maurya, S. P., Singh, N. P., & Singh, K. H. (2020). Seismic Inversion Methods : A Practical Approach. springer.
Onajite, E. (2021). applied techniques to integrated oil and gas reservoir characterization. Candice Janco, Elsevier.
Shahbazi, A., Soleimani M. M., Thiruchelvam, V., Fei, K. T., & Babasafari, A. A. (2020). Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir. Journal of Asian Earth Sciences, 202, 104541. https://doi.org/10.1016/j.jseaes.2020.104541.
Soleimani, M., Jodeiri, S. B., & Rafiei, M. (2016), Integrated petrophysical modeling for a strongly heterogeneous and fractured reservoir, Sarvak Formation, SW Iran. Natural Resources Research, 26(1), 75-88.
Silva, G. M., Souza, V. De, Davolio, A., Schiozer, D. J., & Petr, P. (2020). Improving fluid modeling representation for seismic data assimilation in compositional reservoir simulation. Journal of Petroleum Science and Engineering, 194(June), 107446. https://doi.org/10.1016/j.petrol.2020.107446.
Simm, R., & Bacon, M. (2014). Seismic Amplitude. Cambridge university press.
Soares, A. (2021). Geostatistical Seismic Inversion : One Nugget from the Tróia Conference. Mathematical Geosciences, 53(2), 211–226. https://doi.org/10.1007/s11004-020-09910-0.
Wei, W., Zhu, X., Meng, Y., Xiao, L., Xue, M., & Wang, J. (2016). Porosity model and its application in tight gas sandstone reservoir in the southern part of West Depression , Liaohe Basin , China. Journal of Petroleum Science and Engineering, 141, 24–37. https://doi.org/10.1016/j.petrol.2016.01.010.
Yasin, Q., Mohyuddin, G., Khalid, P., Baklouti, S., & Du, Q. (2021). Application of machine learning tool to predict the porosity of clastic depositional system , Indus Basin , Pakistan. Journal of Petroleum Science and Engineering, 197(September 2020), 107975. https://doi.org/10.1016/j.petrol.2020.107975.