Alibak, A.H., Khodarahmi, M., Fayyazsanavi, P., Alizadeh, S.M., Hadi, A.J., & Aminzadehsarikhanbeglou, E. (2022). Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique. J. Clean. Prod, 337, 130509. https://doi.org/10.1016/j.jclepro.2022.130509.
Arhami, M., Kamali, N., & Rajabi, M.M. (2013). Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations, Environ. Sci. Pollut. Res, 20, 4777–4789. https://doi.org/10.1007/s11356-012-1451-6.
Atash, F. (2007). The deterioration of urban environments in developing countries: Mitigating the air pollution crisis in Tehran, Iran. Cities, 24, 399–409. https://doi.org/10.1016/j.cities.2007.04.001.
Beale, M.H., Hagan, M.T., & Demuth, H.B. (2012). Neural Network ToolboxTM User’s Guide, in: R2012a, The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760-2098, Www.Mathworks.Com.
Bell, M.L., Goldberg, R., Hogrefe, C., Kinney, P.L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzweig, C., & Patz, J.A. (2007). Climate change, ambient ozone, and health in 50 US cities. Clim. Change, 82, 61–76. https://doi.org/10.1007/s10584-006-9166-7.
Camalier, L., Cox, W., & Dolwick, P. (2007). The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ., 41, 7127–7137. https://doi.org/10.1016/j.atmosenv.2007.04.061.
Chaloulakou, A., Saisana, M., & Spyrellis, N. (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Sci. Total Environ., 313, 1–13. https://doi.org/10.1016/S0048-9697(03)00335-8.
Comrie, A.C. (1997). Comparing Neural Networks and Regression Models for Ozone Forecasting. J. Air Waste Manag. Assoc., 47, 653–663. https://doi.org/10.1080/10473289.1997.10463925.
Cox, W.M., & Chu, S. H. (1996). Assessment of interannual ozone variation in urban areas from a climatological perspective. Atmos. Environ., 30, 2615–2625. https://doi.org/10.1016/1352-2310(95)00346-0.
Dawson, J.P., Adams, P.J., & Pandis, S.N. (2007). Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ., 41, 1494–1511. https://doi.org/10.1016/j.atmosenv.2006.10.033.
Dawson, J.P., Racherla, P.N., Lynn, B.H., Adams, P.J., & Pandis, S.N. (2009). Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology., J. Geophys. Res. Atmospheres, 114. https://doi.org/10.1029/2008JD009849.
Ebi, K.L., & McGregor, G. (2008). Climate Change, Tropospheric Ozone and Particulate Matter, and Health, Impacts. Environ. Health Perspect., 116, 1449–1455. https://doi.org/10.1289/ehp.11463.
Ephrath, J.E., Goudriaan, J., & Marani, A. (1996). Modelling diurnal patterns of air temperature, radiation wind speed, and relative humidity by equations from daily characteristics. Agric. Syst., 51, 377–393. https://doi.org/10.1016/0308-521X(95)00068-G.
Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D., & Stockwell, W. (2000). Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review. Bull. Am. Meteorol. Soc., 81, 1537–1575.
Gardner, M.W., & Dorling, S.R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ., 32, 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0.
Gibson, P.B., Perkins-Kirkpatrick, S.E., & Renwick, J.A. (2016). Projected changes in synoptic weather patterns over New Zealand examined through self-organizing maps. International Journal of Climatology, 36, 3934–3948. https://doi.org/10.1002/joc.4604.
Gryparis, A., Forsberg, B., Katsouyanni, K., Analitis, A., Touloumi, G., Schwartz, J., Samoli, E., Medina, S., Anderson, H.R., Niciu, E.M., Wichmann, H.-E., Kriz, B., Kosnik, M., Skorkovsky, J., Vonk, J.M., & Dörtbudak, Z. (2004). Acute Effects of Ozone on Mortality from the “Air Pollution and Health A Europian Approach” Project. Am. J. Respir. Crit. Care Med., 170, 1080–1087. https://doi.org/10.1164/rccm.200403-333OC.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., & Fall, R. (2000). Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos. Environ., 34, 2205–2230. https://doi.org/10.1016/S1352-2310(99)00465-3.
Halek, F., Kavouci, A., & Montehaie, H. (2004). Role of motor-vehicles and trend of air borne particulate in the Great Tehran area, Iran. Int. J. Environ. Health Res., 14, 307–313. https://doi.org/10.1080/09603120410001725649.
Hessami, M., Gachon, P., Ouarda, T.B.M.J., & St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environ. Model. Softw., 23, 813–834. https://doi.org/10.1016/j.envsoft.2007.10.004.
Holloway, T., Spak, S.N., Barker, D., Bretl, M., Moberg, C., Hayhoe, K., Van Dorn, J., & Wuebbles, D. (2008). Change in ozone air pollution over Chicago associated with global climate change. J. Geophys. Res. Atmospheres, 113. https://doi.org/10.1029/2007JD009775.
Hosseinpoor, A.R., Forouzanfar, M.H., Yunesian, M., Asghari, F., Naieni, K.H., & Farhood, D. (2005). Air pollution and hospitalization due to angina pectoris in Tehran, Iran: A time-series study. Environ. Res., 99, 126–131. https://doi.org/10.1016/j.envres.2004.12.004.
Hoveidi, H., Aslemand, A., Vahidi, H., & Akhavan, F. (2013). Cost Emission of Pm10 on Human Health Due to the Solid Waste Disposal Scenarios, Case Study; Tehran, Iran. J. Earth Sci. Clim. Change., https://doi.org/10.4172/2157-7617.1000139.
IPCC, (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001.
IPCC, (2007). Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jacob, D.J., & Winner, D.A. (2009). Effect of climate change on air quality. Atmos. Environ., 43, 51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051.
Jacobson, M.Z. (2005). Fundamentals of Atmospheric Modeling, 2nd ed. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139165389.
Khansalari, S., Ghobadi, N., Bidokhti, A., & Fazel-Rastgar, F. (2020). Statistical classification of synoptic weather patterns associated with Tehran air pollution. J. Air Pollut. Health, 5, 43–62. https://doi.org/10.18502/japh.v5i1.2858.
Lee, B. S., & Wang, J. L. (2006). Concentration variation of isoprene and its implications for peak ozone concentration. Atmos. Environ., 40, 5486–5495. https://doi.org/10.1016/j.atmosenv.2006.03.035.
Leibensperger, E.M., Mickley, L.J., & Jacob, D.J. (2008). Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmospheric Chem. Phys., 8, 7075–7086. https://doi.org/10.5194/acp-8-7075-2008.
Liao, H., Chen, W.-T., & Seinfeld, J.H. (2006). Role of climate change in global predictions of future tropospheric ozone and aerosols. J. Geophys. Res. Atmospheres, 111. https://doi.org/10.1029/2005JD006852.
Lioubimtseva, E., & Henebry, G.M. (2009). Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ., 73, 963–977. https://doi.org/10.1016/j.jaridenv.2009.04.022.
Liu, S.C., Trainer, M., Fehsenfeld, F.C., Parrish, D.D., Williams, E.J., Fahey, D.W., Hübler, G., & Murphy, P.C. (1987). Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res. Atmospheres, 92, 4191–4207. https://doi.org/10.1029/JD092iD04p04191.
Lynn, B.H., Druyan, L., Hogrefe, C., Dudhia, J., Rosenzweig, C., Goldberg, R., Rind, D., Healy, R., Rosenthal, J., & Kinney, P. (2004). Sensitivity of present and future surface temperatures to precipitation characteristics. Clim. Res., 28, 53–65. https://doi.org/10.3354/cr028053.
Mejia, J., Wilcox, E., Rayne, S., & Mosadegh, E. (2018). Final report: Vehicle Miles Traveled Review, https://doi.org/10.13140/RG.2.2.29814.52807.
Millstein, D.E., & Harley, R.A. (2009). Impact of climate change on photochemical air pollution in Southern California. Atmospheric Chem. Phys., 9, 3745–3754. https://doi.org/10.5194/acp-9-3745-2009.
Mosadegh, E. (2013). Modeling the Regional Effects of Climate Change on Future Urban Air Quality (With Special Reference to Future Ozone Concentrations in Tehran, Iran), Univ. Tehran, Iran. DOI: 10.13140/RG.2.2.23815.32165.
Mosadegh, E., & Babaeian, I. (2022a). Projection of Temperature and Precipitation for 2020-2100 Using Post-processing of General Circulation Models Output and Artificial Neural Network Approach, Case Study: Tehran and Alborz Provinces. Iranian Journal of Geophysics. https://doi.org/10.30499/ijg.2022.311104.1370.
Mosadegh, E., & Babaeian, I. (2022b). Quantifying the Range of Uncertainty in GCM Projections for Future Solar Radiation, Temperature and Precipitation under Global Warming Effect in Dushan-Tappeh Station, Tehran, Iran. Iranian Journal of Geophysics. https://doi.org/10.30499/ijg.2022.310958.1369.
Mosadegh, E., Mejia, J., Wilcox, E.M., & Rayne, S. (2018). Vehicle Miles Travel (VMT) trends over Lake Tahoe area and its effect on Nitrogen Deposition, A23M-3068.
Mosadegh, E., & Nolin, A.W. (2020). Estimating Arctic sea ice surface roughness by using back propagation neural network, C014-0005.
Mosadegh, E., & Nolin, A.W. (2022). A New Data Processing System for Generating Sea Ice Surface Roughness Products from the Multi-Angle Imaging SpectroRadiometer (MISR) Imagery. Remote Sens., 14, 4979. https://doi.org/10.3390/rs14194979.
Mott, J.A., Mannino, D.M., Alverson, C.J., Kiyu, A., Hashim, J., Lee, T., Falter, K., & Redd, S.C. (2005). Cardiorespiratory hospitalizations associated with smoke exposure during the 1997, Southeast Asian forest fires. Int. J. Hyg. Environ. Health, 208, 75–85. https://doi.org/10.1016/j.ijheh.2005.01.018.
Murazaki, K., & Hess, P. (2006). How does climate change contribute to surface ozone change over the United States. J. Geophys. Res. Atmospheres, 111. https://doi.org/10.1029/2005JD005873.
Narumi, D., Kondo, A., & Shimoda, Y. (2009). The effect of the increase in urban temperature on the concentration of photochemical oxidants. Atmos. Environ., 43, 2348–2359. https://doi.org/10.1016/j.atmosenv.2009.01.028.
Nejatishahidin, N., Fayyazsanavi, P., & Kosecka, J. (2022). Object Pose Estimation using Mid-level Visual Representations (No. arXiv:2203.01449). arXiv. https://doi.org/10.48550/arXiv.2203.01449.
Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J., & Kolehmainen, M. (2004). Evolving the neural network model for forecasting air pollution time series, Eng. Appl. Artif. Intell., Intelligent Control and Signal Processing, 17, 159–167. https://doi.org/10.1016/j.engappai.2004.02.002.
Nunnari, G., Nucifora, A.F.M., & Randieri, C. (1998). The application of neural techniques to the modelling of time-series of atmospheric pollution data. Ecol. Model., 111, 187–205. https://doi.org/10.1016/S0304-3800(98)00118-5.
Ordóñez, C., Mathis, H., Furger, M., Henne, S., Hüglin, C., Staehelin, J., & Prévôt, A.S.H. (2005). Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chem. Phys., 5, 1187–1203. https://doi.org/10.5194/acp-5-1187-2005.
Orru, H., Andersson, C., Ebi, K.L., Langner, J., Åström, C., & Forsberg, B. (2013). Impact of climate change on ozone-related mortality and morbidity in Europe. Eur. Respir. J., 41, 285–294. https://doi.org/10.1183/09031936.00210411.
Racherla, P.N., & Adams, P.J. (2006). Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res. Atmospheres, 111. https://doi.org/10.1029/2005JD006939.
Rahnama, M., & Noury, M. (2008). Developing of Halil River Rainfall-Runoff Model, Using Conjunction of Wavelet Transform and Artificial Neural Networks. Res. J. Environ. Sci., 2, 385–392. https://doi.org/10.3923/rjes.2008.385.392.
Schlink, U., Dorling, S., Pelikan, E., Nunnari, G., Cawley, G., Junninen, H., Greig, A., Foxall, R., Eben, K., Chatterton, T., Vondracek, J., Richter, M., Dostal, M., Bertucco, L., Kolehmainen, M., & Doyle, M. (2003). A rigorous inter-comparison of ground-level ozone predictions. Atmos. Environ., 37, 3237–3253. https://doi.org/10.1016/S1352-2310(03)00330-3.
Seinfeld, J.H., & Pandis, S.N. (2006). Atmospheric chemistry and physics: from air pollution to climate change, 2nd ed. Wiley, Hoboken, N.J.
Semenov, M., & Barrow, E. (2002). LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies.
Semenov, M., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res., 41, 1–14. https://doi.org/10.3354/cr00836.
Semenov, M.A. (2007). Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric. For. Meteorol, 144, 127–138. https://doi.org/10.1016/j.agrformet.2007.02.003.
Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ., 33, 1821–1845. https://doi.org/10.1016/S1352-2310(98)00345-8.
Sillman, S., & Samson, P.J. (1995). Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments. J. Geophys. Res. Atmospheres, 100, 11497–11508. https://doi.org/10.1029/94JD02146.
Sousa, S.I.V., Martins, F.G., Alvim-Ferraz, M.C.M., & Pereira, M.C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw., 22, 97–103. https://doi.org/10.1016/j.envsoft.2005.12.002.
Spitters, C.J.T., Toussaint, H.A.J.M., & Goudriaan, J. (1986). Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric. For. Meteorol., 38, 217–229. https://doi.org/10.1016/0168-1923(86)90060-2.
Steiner, A.L., Tonse, S., Cohen, R.C., Goldstein, A.H., & Harley, R.A. (2006). Influence of future climate and emissions on regional air quality in California. J. Geophys. Res. Atmospheres, 111. https://doi.org/10.1029/2005JD006935.
Stott, P.A., & Kettleborough, J.A. (2002). Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416, 723–726. https://doi.org/10.1038/416723a.
Varotsos, K.V., Tombrou, M., & Giannakopoulos, C. (2013). Statistical estimations of the number of future ozone exceedances due to climate change in Europe. J. Geophys. Res. Atmospheres, 118, 6080–6099. https://doi.org/10.1002/jgrd.50451.
Webster, M.D., Babiker, M., Mayer, M., Reilly, J.M., Harnisch, J., Hyman, R., Sarofim, M.C., & Wang, C. (2002). Uncertainty in emissions projections for climate models. Atmos. Environ., 36, 3659–3670. https://doi.org/10.1016/S1352-2310(02)00245-5.
Wilby, R., Charles, S., Zorita, E., Timbal, B., Whetton, P., & Mearns, L. (2004). Guidelines For Use of Climate Scenarios Developed From Statistical Downscaling Methods, Support. Mater., Intergov. Penel Clim. Change.
Wilks, D.S., & Wilby, R.L. (1999). The weather generation game: a review of stochastic weather models. Prog. Phys. Geogr. Earth Environ, 23, 329–357. https://doi.org/10.1177/030913339902300302.
Wise, E.K. (2009). Climate-based sensitivity of air quality to climate change scenarios for the southwestern United States. Int. J. Climatol., 29, 87–97. https://doi.org/10.1002/joc.1713.
Zarghami, M., Abdi, A., Babaeian, I., Hassanzadeh, Y., & Kanani, R. (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob. Planet. Change, 78, 137–146. https://doi.org/10.1016/j.gloplacha.2011.06.003.