ارزیابی عملکرد بانک داده‌های بازتحلیل ERA5 و MERRA2 در تخمین میزان عمق برف در شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

پوشش برف گسترده‌ترین جزء یخ‌کره است و تنوع فصلی و سالانه قابل‌توجه آن تأثیرات چشم‌گیری بر گردش آب جهانی و توازن انرژی سطحی دارد. مشاهدات زمینی قابل‌اعتمادترین منبع داده عمق برف است. از آنجایی‌که این داده‌ها در برخی از مناطق از جمله مناطق مرتفع و کوهستان‌ها در دسترس نیستند و تعداد این ایستگاه‌ها بسیار محدود است، در چنین نواحی، از بانک داده‌های بازتحلیل و سنجش از دور استفاده می‌شود. هدف از مطالعه حاضر، مقایسه عملکرد نتایج حاصل از بانک داده‌های MERRA2 و ERA5 در تعیین پارامتر عمق برف در منطقه شمال غرب ایران است. بدین‌منظور از داده‌های میانگین ماهانه عمق برف حاصل از ایستگاه‌های همدیدی در منطقه موردمطالعه استفاده شده است. این مقایسه برای دوره 40 ساله در بازه زمانی 1981 تا 2020 انجام می‌گیرد. نتایج بررسیِ توزیع مکانی و زمانی در سراسر محدوده مورد مطالعه نشان می‌دهد که داده‌های ERA5 در تخمین میزان عمق برف نسبت به داده‌های مشاهداتی دارای فروتخمین هستند؛ در حالی‌که داده‌های MERRA2 در بیشتر ایستگاه‌ها در تخمین میزان عمق برف میانگین با فراتخمین همراه هستند. همچنین بر اساس نتایج، میزان عدم‌قطعیت در برآورد میزان عمق برف میانگین حاصل از داده‌های ERA5 با افزایش عرض جغرافیایی و ارتفاع منطقه موردمطالعه بیشتر می‌شود، ولی عدم‌قطعیت در تخمین میزان عمق برف در بانک داده MERRA2 فقط به عرض جغرافیایی بستگی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the performance of the ERA5 and MERRA2 reanalysis datasets in estimating snow depth over Northwestern Iran

نویسندگان [English]

  • Faezeh sadat Majidi Karhroudi
  • Maryam Gharaylou
  • S. Samaneh Sabetghadam
Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

Snow cover is the most widely distributed and most dynamic component of the cryosphere, and its significant seasonal and annual variability have notable influences on the global water circulation and surface energy balance. Ground observations represent the most direct and reliable snow depth data source. Direct measurements are generally not used to monitor snow depth at hemispheric scales due to the inadequate number of measurements and the sparse distribution of measurements in remote regions, mountains, and high elevation areas. Instead, the method examined in this study is the use of reanalysis data. The aim of the current study is to evaluate the performance of the ERA5 and MERRA2 reanalysis datasets in estimating snow depth in Northwestern Iran. The evaluation has been done using snow depth data from meteorological stations throughout the study area.
The area examined in this study includes the provinces of Ardabil, East Azerbaijan and West Azerbaijan, which are located in the range of 44 to 51 degrees in longitude and 35.7 to 40 degrees in latitude. This area was selected for two primary reasons: firstly, the mountainous terrain of the region that results in a higher amount of snowfall, and secondly, there is an abundance of observational data available for estimation purposes. To conduct this study, monthly mean snow depth data from the ERA5 and MERRA2 reanalysis databases for the period 1981 to 2020 were used. The spatial resolution of the ERA5 data is 0.25 x 0.25 degrees. The MERRA2 data, on the other hand, has a spatial resolution of 0.625 x 0.5. degrees Since the data from MERRA2 and ERA5 have different spatial resolutions, to compare these two databases, a regridding method is used to equalize their spatial resolutions. The ERA5 data is regridded to MERRA2 spatial resolution using nearest-neighbor interpolation.
The results of this study showed that by examining the spatial and temporal distribution, the ERA5 database underestimates the mean value of snow depth over the entire study area. On the other hand, the MERRA2 database overestimated the average snow depth at most stations and had more errors than the ERA5 database. According to the ERA5 reanalysis database, the highest snow depth over a 40-year period has occured in February, while for the MERRA2 database, it has occurred in January. In the ERA5 database, the estimated snow depth values were consistent with the observations only in February, while in other months there was a discrepancy between the snow depth estimated by ERA5 and the observations. As the station's height and latitude increase, the error increases and the underestimation of snow depth from ERA5 also increases, but in the MERRA2 dataset, there is no significant relationship between the height of the station and latitude with bias. The analysis of the results of the present study shows that the ERA5 database is more accurate than MERRA2 for studying the spatial and temporal distribution of snow depth in the northwestern region of Iran. Of course, in the areas with high snow cover, the MERRA2 data estimates values are closer to observations.

کلیدواژه‌ها [English]

  • ERA5
  • MERRA2
  • Reanalysis dataset
  • Snow depth
جوانشیر عزیزی، م.؛ رسول‌زاده، ع.؛ رحمتی، ا.؛ شایقی، ا. و باختر، آ. (1399). ارزیابی عملکرد داده‌های بازتحلیل‌شدهEra-5  در تخمین بارش روزانه و ماهانه در استان اردبیل. تحقیقات آب و خاک ایران، 51(11)، 2937-2951.
Alonso-González, E., Gutmann, E., Aalstad, K., Fayad, A., Bouchet, M., & Gascoin, S. (2021). Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area. Hydrology and Earth System Sciences, 25(8), 4455-4471.
An, Y., Zhao, W., Li, C., & Liu, Y. (2020). Evaluation of six satellite and reanalysis precipitation products using gauge observations over the Yellow River Basin, China. Atmosphere, 11(11), 1223.
Ansari, H., & Marofi, S. (2017). Snow water equivalent estimation using AMSR-E and GLDAS model (case study: basins of northwestern Iran). Journal of Water and Soil, 31(5), 1497-1510.
Armstrong, R. L., & Brodzik, M. J. (2002). Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms. Annals of Glaciology, 34, 38-44.
Baba, M. W., Boudhar, A., Gascoin, S., Hanich, L., Marchane, A., & Chehbouni, A. (2021). Assessment of MERRA2 and ERA5 to Model the Snow Water Equivalent in the High Atlas (1981–2019). Water, 13(7), 890.
Blöschl, G. (1999). Scaling issues in snow hydrology. Hydrological processes, 13(14‐15), 2149-2175.
Dai, L., Che, T., Xie, H., & Wu, X. (2018). Estimation of snow depth over the Qinghai-Tibetan plateau based on AMSR-E and MODIS data. Remote Sensing, 10(12), 1989.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., & Bechtold, P. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553-597.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA2). Journal of climate, 30(14), 5419-5454.
Gottardi, F., Obled, C., Gailhard, J., & Paquet, E. (2012). Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. Journal of hydrology, 432, 154-167.
Grünewald, T., & Lehning, M. (2015). Are flat‐field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale. Hydrological Processes, 29(7), 1717-1728.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., & Simmons, A. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2017). So, how much of the Earth’s surface is covered by rain gauges?. Bulletin of the American Meteorological Society, 98(1), 69-78.
King, F., & Fletcher, C. G. (2020). Using CloudSat‐CPR Retrievals to Estimate Snow Accumulation in the Canadian Arctic. Earth and Space Science, 7(2), e2019EA000776.
Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S., Cosme, E., Jonas, T., Winstral, A., & Margulis, S.A. (2020). Toward snow cover estimation in mountainous areas using modern data assimilation methods: A review. Frontiers in Earth Science, 8, p.325.
Leutbecher, M., Lock, S. J., Ollinaho, P., Lang, S. T., Balsamo, G., Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R. J., Juricke, S. Lawrence, H. MacLeod, D., Magnusson, L. Malardel, S. Massart, S. Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F., Wedi, N. & Weisheimer, A. (2017). Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quarterly Journal of the Royal Meteorological Society, 143(707), 2315-2339.
Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., & Jonas, T. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature communications, 10(1), 1-12.
Liu, Y., & Margulis, S. A. (2019). Deriving Bias and uncertainty in MERRA2 snowfall precipitation over High Mountain Asia. Frontiers in Earth Science, 7, 280.
Moazami, S., Golian, S., Hong, Y., Sheng, C., & Kavianpour, M. R. (2016). Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran. Hydrological Sciences Journal, 61(2), 420-440.
Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., & Tedesco, M. (2020). Evaluation of long-term Northern Hemisphere snow water equivalent products. The Cryosphere, 14(5), 1579-1594.
Nepal, S., Krause, P., Flügel, W. A., Fink, M., & Fischer, C. (2014). Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrological Processes, 28(3), 1329-1344.
Panahi, M., & Behrangi, A. (2020). Comparative analysis of snowfall accumulation and gauge undercatch correction factors from diverse data sets: In situ, satellite, and reanalysis. Asia-Pacific Journal of Atmospheric Sciences, 56(4), 615-628.
Parker, W. S. (2016). Reanalyses and observations: What’s the difference. Bulletin of the American Meteorological Society, 97(9), 1565-1572.
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., & Partyka, G. S. (2017). Land surface precipitation in MERRA2. Journal of Climate, 30(5), 1643-1664.
Snauffer, A. M., Hsieh, W. W., & Cannon, A. J. (2016). Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. Journal of Hydrology, 541, 714-726.
Tedesco, M., Derksen, C., Deems, J. S., & Foster, J. L. (2015). Remote sensing of snow depth and snow water equivalent. Remote Sensing of the Cryosphere, 73-98.
Xiao, L., Che, T., & Dai, L. (2020). Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere during 1980–2016. Remote Sensing, 12(19), 3253.
Zhang, H., Zhang, F., Che, T., Yan, W., & Ye, M. (2021). Investigating the ability of multiple reanalysis datasets to simulate snow depth variability over mainland China from 1981 to 2018. Journal of Climate, 34(24), 9957-9972.