انتشار موج یون صوتی ضربه‌ای در پلاسما در حضور میدان مغناطیسی غیریکنواخت

نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک، واحد بجنورد، دانشگاه آزاد اسلامی، بجنورد، ایران.

چکیده

انتشار امواج غیرخطی از جمله امواج یون صوتی، الکترون صوتی، غبار صوتی و ... در شرایط مختلف تعادلی و غیرتعادلی موردمطالعه قرار گرفته است. در این میان، مطالعه و بررسی این امواج در پلاسمای مغناطیده به‌دلیل تأثیر میدان مغناطیسی خارجی بر پلاسما با زوایای مختلف انتشار موج، از جذابیت زیادی برخوردار است. مطالعات گسترده‌ای در مورد انتشار امواج صوتی در پلاسمای مغناطیده وجود دارد که نشان می‌دهد زمانی که شدت میدان مغناطیسی ثابت است، انتشار موج صوتی با نمایه سالیتونی و به شکل پایدار در پلاسما رخ می‌دهد. در واقع میدان مغناطیسی یکنواخت در نوسان ذرات پلاسمایی برای ایجاد مناطق رقیق و متراکم و نهایتاً انتشار موج دخالتی ندارد و به همین دلیل موج سالیتونی هارمونیک در پلاسما منتشر می‌شود. ما قبلاً با عواملی نظیر گرمایش، برخورد ذرات و ویسکوزیته که باعث اختلال در نوسان ذرات در پلاسما می‌شوند، آشنا شده‌ایم. در این شرایط انتشار موج صوتی به شکل سالیتونی نخواهد بود و موج ضربه‌ای ظاهر می‌شود. از سوی دیگر می‌دانیم که در شرایط واقعی، میدان مغناطیسی حاکم بر پلاسمای آزمایشگاهی مانند توکامک و همچنین پلاسماهای اخترفیزیکی و فضایی به هیچ وجه یکنواخت نیست. به‌عنوان یک مثال واقعی، شدت میدان مغناطیسی زمین از nT 30000 در عرض‌جغرافیایی 0 و طول‌جغرافیایی 60+ تا nT 45000 در عرض‌جغرافیایی 10 و طول‌جغرافیایی 90+ که در آن میدان مغناطیسی تقریباً افقی است، تغییر می‌کند. بنابراین مطالعه اثر میدان مغناطیسی غیر‌یکنواخت جالب خواهد بود. برای این منظور، ما یک مدل پلاسمای مغناطیده یون-الکترون را در نظر گرفته و در حالی‌که شدت میدان مغناطیسی در نقاط مختلف پلاسما یکسان نیست، رفتار موج یون صوتی را به‌صورت عددی بررسی کردیم. از روش Runge-Kutta مرتبه دوم استفاده کرده و به‌منظور سهولت در محاسبات، جهت میدان مغناطیسی را ثابت فرض کردیم. از روش مذکور برای حل عددی معادلات اساسی موج یون صوتی استفاده کرده و نشان دادیم که رفتار پایدار موج سالیتونی در حضور میدان مغناطیسی غیریکنواخت دچار اختلال می‌شود و در این حالت موج به‌صورت موج ضربه‌ای انتشار می‌یابد. اکنون می‌توان میدان مغناطیسی غیریکنواخت را به‌همراه عواملی مانند ویسکوزیته، گرمایش و ... به‌عنوان منبع جدید تولید موج ضربه‌ای در پلاسما معرفی کرد. این موضوع با در نظر گرفتن خاصیت برخوردی و فرکانس‌های ژیروسکوپی ذرات نیز قابل بررسی و مطالعه است. مطمئناً در این شرایط تأثیر میدان مغناطیسی غیریکنواخت می‌تواند متفاوت باشد. این چالش را همچنین می‌توان برای سایر امواج صوتی در مدل‌های دمایی و چگالی مختلف، پلاسماهای غیر حرارتی متنوع و سایر ویژگی‌ها در پلاسماهای اخترفیزیکی و آزمایشگاهی دنبال کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ion acoustic shock wave propagation in plasma in the presence of non-uniform magnetic field

نویسنده [English]

  • Hamid Reza Pakzad
Department of Physics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
چکیده [English]

The propagation of nonlinear waves such as ion acoustic, electron acoustic, dust acoustic in the plasma media have been studied in different equilibrium and non-equilibrium conditions. Meanwhile, the study of these waves in magnetized plasmas, due to the effect of the external magnetic field on the plasma with different angles of wave propagation has been less addressed. There are extensive studies on the propagation of acoustic waves in magnetized plasma, which show that when the intensity of the magnetic field is constant, these waves propagate as soliton waves with a stable profile in the plasma. In fact, the uniform magnetic field does not interfere with the fluctuations of the plasma particles to produce dilute and dense regions and wave propagation, and for this reason, the harmonic soliton wave is propagated in the plasma. We know factors such as heating, particles collision and viscosity that cause perturbation in plasma particles fluctuations. In this situation, the propagation of the acoustic wave will no longer be in the soliton form and a shock wave may appear. On the other hand, we know that in actual conditions, the magnetic field governing laboratory plasmas such as tokamaks and also astrophysical and space plasmas are not constant at all. As a realistic example, the Earth's magnetic field intensity varies from 30000 nT in 0 (latitude): +60 (altitude) to 45000 nT in 10 (latitude): +90 (altitude), where the magnetic field is almost horizontal. Therefore it would interesting to study the presence of a non-uniform magnetic field. For this purpose, we considered an ion-electron magnetized plasma model and numerically investigate the ion acoustic wave behavior in this medium, while the strength of the magnetic field is not the same in different parts of the plasma. In this situation, for simplicity in calculations, we assume the direction of the magnetic field to be constant. We use the second order Runge-Kutta method and by numerically solving the basic equations of the ion acoustic wave, it is shown that the stable behavior of the solitonic wave is perturbed in the presence of varying magnetic field and in this case, the wave propagates as a shock wave. Now we can introduce the non-uniform magnetic field along with factors such as viscosity, heating, collision etc. as the new sources of producing the acoustic shock waves in plasmas. We also studied the cases where the collisional terms and gyro frequencies of the particles are considered. In this condition, the effects of the non-uniform magnetic field are different. This subject can also be considered for other acoustic waves in different temperature and density models, various non-thermal plasmas and other features in astrophysical and laboratory plasmas.

کلیدواژه‌ها [English]

  • Solitary waves
  • Shock waves
  • Reductive Perturbation Method
  • Non-uniform Magnetic Field
Andersen, H. K., D’Angelo, N., Michelsen, P., & Nielsen, P. (1967). Investigation of Landau-damping effects on shock formation. Phys. Rev. Lett., 19(4), 149-151.
Biskamp, D. (1973). Collisionless shock waves in plasmas. Nucl. Fusion, 13 (5). 719-740.
Casanova, M., Larroche, O., & Matte, J. P. (1991). Kinetic simulation of a collisional shock wave in a plasma. Phys. Rev. Lett., 67 (16). 2143-2146.
Chan, C., Khazei, M., Lonngren, K. E., & Hershkowitz, N. (1981). Excitation of multiple ion‐acoustic shocks. Phys. Fluids 24, (8), 1452-1455.
Hu, P. N. (1972). Collisional Theory of Shock and Nonlinear Waves in a Plasma. Physics of Fluids, 15 (5). 854–864.
Keilhacker, M., Kornherr, M., Steuer, K. H, (1969). Observation of collisionless plasma heating by strong shock waves. Zeitschrift für Physik A Hadrons and nuclei, 223(4). 385–396.
Laedke, E. W., & Spatschek, K. H. (1982). Nonlinear ion‐acoustic waves in weak magnetic fields. Phys. Fluids 25, 985 (6), 985-989.
Li, F. O., & Havnes, O. (2001). Shock waves in a dusty plasma. Phys. Rev. E, 64 (6). 066407 –6.
Luo, Q. Z., D’Angelo, N., & Merlino, R. L. (1999). Experimental study of shock formation in a dusty plasma. Phys. Plasmas 6, (9). 3455-3458.
Luo, Q. Z., D’Angelo, N., & Merlino, R. L. (2000). Ion acoustic shock formation in a converging magnetic field geometry. Phys. Plasmas 7, (6). 2370-2373.
Mandea, M., & Korte, M. (2011). Geomagnetic Observations and Models, IAGA Special Sopron Series Vol. 5, edited by M. Mandea and M. Korte (Springer, British Geological Survey, 2011).
Misra A. P., Adhikary N.C., & Shukla P. K. (2012). Ion-acoustic solitary waves and shocks in a collisional dusty negative-ion plasma. Phys. Rev. E, 86 (5). 056406.
Nakamura, Y., Bailung, H., & Shukla, P.K. (1999). Observation of Ion-Acoustic Shocks in a Dusty Plasma. Phys. Rev. Lett., 83 (8).1602-1605.
Niu, K. (2009). Shock waves in gas and plasma. Laser and Particle Beams, 14 (10). 125 – 132.
Pakzad, H.R. (2010). Kadomstev–Petviashvili (KP) equation in warm dusty plasma with variable dust charge, two-temperature ion and nonthermal electron. Pramana, J. Phys., 74(4). 605-614.
Pakzad, H.R. (2011). Dust acoustic shock waves in plasmas with strongly coupled dusts and superthermal ions. Can. J. Phys., 89(2). 193-200.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., & Metcalf, M. (1996). Numerical Recipes in Fortran 90., Vol. 2, (Cambridge University Press).
Sagdeev, R. Z. (1966). in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 4, 23–91.
Shah, A., & Saeed, R. (2009). Ion acoustic shock waves in a relativistic electron–positron–ion plasmas, Phys. Lett. A, 373(45). 4164-4168.
Washimi, H., & Taniuti, T. (1966). Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett., 17 (19). 996-998.
Yashvir, Bhatnagar, T. N., & Sharma, S. R. (1984). Nonlinear ion-acoustic waves and solitons in warm-ion magnetized plasma. Plasma Physics and Controlled Fusion, 26, (11), 1303-1310.
Yu, M. Y., Shukla, P. K., & Bujarbarua, S. (1980). Fully nonlinear ion-acoustic solitary waves in a magnetized plasma. Phys. Fluids, 23(10). 2146-2147.