تصحیح تانسور امپدانس سه‌بعدی در حضور مقادیر فاز غیرمعمول و اعوجاج‌های غیرالقایی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

آثار غیرالقایی ساختارهایی با ابعاد کوچک‌تر از مقیاس مشاهده و در اعماق کم، مانع مشاهده صحیح مدل رسانایی الکتریکی منطقه‌ای می‌شوند و مدل‌سازی داده‌های مگنتوتلوریک را غیرقابل اعتماد می‌کنند. گرچه مطالعات متعدد، آثار نامطلوب اعوجاج‌های گالوانی را بر نتایج وارون‌سازی سه‌بعدی مگنتوتلوریک نشان داده‌اند، تصحیح این اعوجاج‌ها در عمل به‌ندرت قبل از وارون‌سازی سه‌بعدی انجام می‌گیرد. زیرا مسئله بازیافت اطلاعات منطقه‌ای در حالت سه‌بعدی شدیداً فرومعین است و حل مجموعه معادلات حاکم برای امپدانس غیر معوج به اعمال قیود بیشتری نیاز دارد. در این تحقیق، پیچیدگی داده‌های مگنتوتلوریک در منطقه زمین‌گرمایی سبلان موردمطالعه قرار گرفت. این منطقه شامل مجموعه‌ای از سنگ‌های آتشفشانی جوان مربوط به دوران سنوزوئیک و فعالیت زمین‌ساختی آن متأثر از رژیم تراکمی ناشی از برخورد صفحات است. ابتدا مدلی برای منطقه تطبیق داده شد که در پریودهای میانی، دوبعدی و در پریودهای کوتاه و بلند، سه‌بعدی است. با برآورد اعوجاج و حذف آن برای بازه پریودی با رفتار دوبعدی، مؤلفه‌های تانسور امپدانس برای ساختار سه‌بعدی بازیابی شده‌اند. از آنجایی‌که مقادیر بازیابی‌شده با مقادیر اندازه‌گیری‌شده متفاوت هستند، وارون‌سازی هرکدام از دو مجموعه نتایج متفاوتی دارد. علاوه‌بر این تعداد قابل‌توجهی از مؤلفه‌های فاز امپدانس در ربع‌های مثلثاتی که در شرایط معمولی زمین دوبعدی یا حتی سه‌بعدی مقید به قرارگیری در آنها هستند، واقع نمی‌شوند. وابستگی این مقادیر غیرمعمول به زاویه چرخش، ویژگی‌های جهتی استنباط‌شده از تانسور فاز و سطح اعوجاج گالوانی بررسی شد. نتایج نشان می‌دهد که ناهمگنی‌های سه‌بعدی کمترین اثر را دارند و این پدیده عمدتاً حاصل ترکیبی از ناهمسانگردی و اعوجاج است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-dimensional impedance tensor correction in the presence of out of quadrant phases and non-inductive distortions

نویسندگان [English]

  • Amir Heydari Sipi
  • Banafsheh Habibian Dehkordi
Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

The non-inductive effects of structures with dimensions smaller than the measurement scale and at shallow depths prevent the correct observation of the regional electrical conductivity model and therefore make the modeling and interpretation of magnetotelluric data difficult and in some cases unreliable. The solutions that have been presented to estimate the intensity of these distortions and recover regional information have been mostly focused on two-dimensional modeling. Several studies have shown the adverse effects of galvanic distortions on 3D magnetotelluric inversion results. Removing or correcting these distortions in practice is, however, rarely done before 3D inversion due to the extreme under-determination of the problem of recovering non-distorted or regional information in 3D environments need to apply more constraints. In this research, the complexity of magnetotelluric data in the Sablan geothermal area, in the northwest of Iran, was studied. By fitting the 3D/2D/3D model in the region, shear and twist parameters have been evaluated for a part of the period interval in which the data show 2D behavior, according to skew angle values. In the next step, the same distortion parameters were applied to the three-dimensional part of the data and the components of the impedance tensor for the 3D structure were recovered. For this purpose, the phase tensor (Caldwell et al, 2004), the rotational invariants of the magnetotelluric tensor (Weaver et al, 2000) and the approach presented by Ledo et al (1998) have been used. In order to correct the distortion, in addition to the estimated values for the twist and shear angles and the period interval selected for matching the two-dimensional model, it should also be taken into account that in the two-dimensional model, the values of the distortion parameters, i.e. the torsion and shear angles, remain constant with changing period. With this criterion, despite the values of the skew angle showing a two-dimensional behavior, the average distortion parameters for a number of stations could not be selected due to high fluctuations. It seems notable to emphasize that the skew parameter is the only necessary and not sufficient condition to confirm the two-dimensional situation. The magnitude and phase of all the components of the recovered impedance tensor are different from before, indicating the importance of the distortion correction procedure before the 3D modeling and inversion. In addition, in more than half of the examines magnetotelluric sites, impedance tensor phase components are not located in the corresponding trigonometric quadrants that are constrained to be placed in them in normal 2D or even 3D earth conditions. There are numerous examples of observing and studying these effects in magnetotelluric data. This behavior is attributed to factors such as anisotropy, three-dimensional complexities, two-dimensional structures with large resistivity contrast and severe distortion (Egbert, 1990; Pina and Dentith, 2018; Wannamaker, 2005; Jones et al, 1998). The results have shown that these abnormal values are related to the rotation angle and distortion level. Some of these stations show very large distortion angles.

کلیدواژه‌ها [English]

  • Magnetotellurics
  • Phase Tensor
  • Impedance Tensor
  • Distortion
  • Out of Quadrant Phase
Bahr, K. (1988). Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J. Geophys, 62, 119–127.
Bibby, H.M., Caldwell, T.G., & Brown, C. (2005). Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys. J. Int, 163, 915-930.
Bogie, I., Cartwright, A.J., Khosrawi, K., Talebi, B., & Sahabi, F. (2000). The MeshkinShahr geothermal project, Iran. Proceedings, World Geothermal Congress, 997-1002.
Bologna, M.S., Egbert, G.D., Padilha, A.L., P´adua, M.B., & Vitorello, I. (2017). 3-D inversion of complex magnetotelluric data from an Archean-Proterozoic terrain in northeastern S˜ao Francisco Craton, Brazil. Geophys. J. Int., 210, 1545–1559.
Brasse, H., & Eydam, D. (2008). Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. Journal of Geophysical Research, 113, B07109.
Caldwell, T.G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophys. J. Int, 158(2), 457–469.
Egbert, G.D. (1990). Comments on ‘Concerning dispersion relations for the magnetotelluric tensor’ eds Yee, E. & Paulson, K.V. Geophys. J. Int., 102, 1–8.
Groom, R. W., & Bailey, R. C. (1989). Decomposition of magnetotelluric impedance tensors in the presence of local three dimensional galvanic distortion. J. Geophys. Res. Solid Earth, 94, 1913–1925.
Heise, W. & Pous, J. (2003). Anomalous phases exceeding 90◦ in magnetotellurics: anisotropic model studies and a field example. Geophys. J. Int., 155(1), 308–318.
Ichihara, H., & Mogi, T. (2009). A realistic 3-D resistivity model explaining anomalous large magnatotelluric phase: the L-shaped conductor model. Geophys. J. Int., 179, 14–17.
Iran Renewable Energies Organization (SUNA) Islamic Republic of Iran: MT Survey at NW Sabalan Geothermal Project, NW Iran, March 2010.
Jiracek, G.R. (1990). Near-surface and topographic distortions in electromagnetic induction. Surveys in Geophysics, 11, 163–203.
Jones, A.G., Groom, R.W., & Kurtz, R.D. (1993). Decomposition of the BC87 dataset. J. Geomag. Geoelectr, 45, 1127–1150.
KML, (1998). Sabalan geothermal project, Stage 1, Surface exploration, final exploration report. Kingston Morrison Limited Co. Report 2505-RPT-GE-003- for the Renewable Energy Organization of Iran (SUNA), Tehran, Iran, 83 pp.
Ledo, J., Queralt, P., & Pous, J. (1998). Effects of galvanic distortion on magnetotelluric data over a three-dimensional regional structure. Geophys. J. Int., 132, 295-301.
Liddell, M., Unsworth, M., & Peck, J. (2016). Magnetotelluric imaging of anisotropic crust near Fort McMurray, Alberta: implications for engineered geothermal system development. Geophys. J. Int., 205, 1365–1381.
Lilley, F.E.M., & Weaver, J.T. (2010). Phases greater than 90o in MT data: Analysis using dimensionality tools. Journal of Applied Geophysics, 70, 9–16.
Marti, A., Queralt, P., & Ledo, J. (2009). WALDIM: a code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor. Comput. Geosci., 35(12), 2295–2303.
McNeice, G. W., & Jones, A. G., (2001). Multisite, multifrequency tensor decomposition of magnetotelluric data, Geophysics, 66 (1). Society of Exploration Geophysicists, 66(1), 158–173.
Noorollahi, Y., Itoi, R., Fujii, H., & Tanaka, T., (2008). GIS integration model for geothermal exploration and well siting. Journal of Geothermics. 37, 107-131.
Pedersen, L.B., & Engels, M. (2005). Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics, 70 (2), G33-G41.
Pina, P. & Dentith, M. (2018). Magnetotelluric data from the Southeastern Capricorn Orogen, Western Australia: an example of widespread out-of-quadrant phase responses associated with strong 3-D resistivity contrasts. Geophys. J. Int., 212, 1022–1032.
Selway, K., Thiel, S. & Key, K. (2012). A simple 2-D explanation for negative phases in TE magnetotelluric data. Geophys. J. Int., 188(3), 945–958.
Tang, W., Li, Y., Oldenburg, D.W., & Liu, J. (2018). Removal of galvanic distortion effects in 3D magnetotellurics data by an equivalent source technique. Geophysics, 38 (2), E95–E110.
Utada, H., & Munekane, H. (2000). On galvanic distortion of regional three-dimensional magnetotelluric impedances. Geophys. J. Int., 140, 385–398.
Weaver, J.T., Agarwal, A.K., & Lilley, F.E. (2000). Characterization of the magnetotelluric tensor in terms of its invariants. Geophys. J. Int., 141, 321-336.
Wannamaker, P.E. (2005). Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surveys in Geophysics, 26, 733–765.