تصحیح بوگه و توپوگرافی در یک مرحله از طریق مدل‌سازی پیشرو با استفاده از منابع متن باز در پایتون

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

در این تحقیق برای به‌دست آوردن آنومالی بوگه کامل برخلاف روش معمول در تصحیح داده‌ها که در آن حذف اثرات جرم موجود بین سطح مبنا و سطح توپوگرافی در یک فرایند گرانی‌سنجی در دو مرحله شامل تصحیح بوگه و تصحیح زمینگان انجام می‌شود، این فرایند به‌صورت تک‌مرحله‌ای انجام می‌شود. بدین‌منظور ابتدا حجم محصور بین سطح مبنا و سطح زمین با استفاده از روش مش‌بندی کواد تری (Quad tree mesh) موجود در پایگاه شبیه‌سازی و تخمین پارامتر در ژئوفیزیک (SimPEG) که امکان تعریف سلول‌های کوچک در نواحی مرزی و در نتیجه دقت بالا در پوشش توپوگرافی را دارد، گسسته می‌شود. سپس داده‌های ارتفاعی منطقه موردمطالعه که از تصاویر Geo TIFF SRTM موجود در پایگاه USGS Earth explore با قدرت تفکیک یک آرک ثانیه (۹۰ متر) استخراج شده‌اند، با توجه به مش‌بندی صورت گرفته برای موقعیت مراکز مش‌ها درون‌یابی می‌شوند. پس از آن اثر گرانی جرم با استفاده از مدل‌سازی پیشرو توسط ماژول شبیه‌سازی (Simulation) تعبیه شده در پایگاه شبیه‌سازی و تخمین پارامتر در ژئوفیزیک محاسبه شده و برای حصول آنومالی بوگه کامل از مقادیر آنومالی هوای آزاد کم می‌شود. روش مذکور روی منطقه‌ای به وسعت تقریبی ۲۰۰ کیلومتر در ۲۰۰ کیلومتر واقع در بخش‌هایی از زاگرس مرکزی و ایران مرکزی مورد آزمایش قرار می‌گیرد. اختلاف نتایج به‌دست آمده از روش تک‌مرحله‌ای در مقایسه با روش استاندارد بین منفی ۴۸/۰ تا مثبت ۶۴/۰ میلی‌گال است که رقم قابل‌توجهی است. با توجه به محدودیت‌ها و خطاهای ناشی از فرضیات ساده کننده در روش استاندارد مانند خطای ناشی از انحنای زمین، استفاده از ارتفاع متوسط به‌جای ارتفاع واقعی در هرنقطه و فرض تخته بی‌نهایت بوگه نتایج به‌دست آمده از روش تک‌مرحله‌ای قابل‌توجیه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bouguer and terrain corrections in one step through forward modeling using open source resources in Python

نویسندگان [English]

  • Vahid E. Ardestani
  • Mansoure Khaleghi yalehgonbadi
Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

In standard gravimetric correction methods, after the raw gravity data sets were corrected for drift, tide, latitude, and free-air effects to obtain free air anomalies, the effect of the mass between the reference surface and ground surface is eliminated in two steps including Bouguer and terrain corrections. But this study removes this effect in one step through the forward modeling method. To do this, two things are necessary for finding more accurate answers. First, how is the underground discretization, and to what extent a network of Digital Terrain Model (DTM) is available? Quad tree mesh accessible in Simulation and Parameter Estimation in Geophysics (SimPEG) is a very accurate and advanced meshing algorithm to discretize subsurface based on our requirements. This meshing system can choose the size of cells in the desired locations. Hence, using this flexible discretization, it is possible to define the smaller cells in borders, near the topographic region, which helps a for more precise answers. Having a dense DTM, the SRTM GeoTiff pictures are downloaded from USGS Earth explorer with 1 arc-second (90 m) resolution (https://doi.org/10.5066/F7PR7TFT), and then height information is extracted from these pictures through GeoToolkit (http://toolkit.geosci.xyz) script. Assuming a flat geoid for our study area, topography is extracted from the SRTM and the pictures are interpolated to estimate the elevation at the gravity observation points.
The gravity effect of the model space (the space between the reference surface and topography) is computed via numerical forward modeling assuming a constant density (2.67 gr/cm3). This procedure is done by the Simulation module in SimPEG and is considered as the Bouguer and terrain corrections simultaneously. These corrections are subtracted from the free-air anomalies, which yields the complete Bouguer anomaly.
This method is powerful in contrast to other standard methods. In standard methods, Bouguer correction considers Bouguer slab approximation. Therefore, accuracy is lost. Also, in large-scale problems, curvature correction becomes necessary. Also, terrain correction for removing the effects of the mass between the lowlands and heights of the region is inevitable. Terrain correction considers two approximations. First, it uses average height. Hence this procedure has a low precision. Secondly it divides the surrounding area into three zones (near, middle, and far) and computes the effects of middle and far zones with lower precision. Therefore, it decreases the accuracy of the results.
The mentioned method is tested on 399 ground gravity data with a grid spacing of about 5 km prepared by the National Cartographical Center of Iran (NCC) in an area of about 200 km in 200 km located in parts of Central Zagros and Central Iran. The results obtained from this one-stage correction method are more accurate and less complicated in doing compared to the results of the usual procedure. Because in this method, we have no simplifying assumptions such as infinite Bouguer slab in Bouguer correction or using relative heights in terrain correction that exist in standard methods.

کلیدواژه‌ها [English]

  • Bouguer correction
  • topography correction
  • quad tree mesh
  • forward modeling
  • SimPEG
Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran. New data and interpretations. Tectonophysics, 229, 211–238.
Allen, M. B. Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates Tectonics, 23, TC2008, doi: 10.1029/2003TC001530.
Berberian, F., & Berberian, M. (1981). Tectono-plutonic episodes in Iran. In: Gupta HKand DelanyFM (eds) Zagros-Hindu Kush-Himalaya Geodynamic Evolution. American Geophysical Union Geodynamics, Series 3, 5-32.
Blais, J.A.R., & Ferland, R. (1984): Optimization in gravimetric terrain corrections. Canadian Journal of Earth Sciences, 21, 505–515.
Bott, M.H.P. (1959). The use of electronic digital computers for the evaluation of gravimetric terrain corrections. Geophysical Prospecting, 7, 46–54.
Blakely, R. J. (1996). Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.
Cassinis, G., Dore, P., & Ballarin, S. (1937). Tavole fondamentali per la riduzione dei valori osservati della gravità.
Cogbill, A.H. (1990). Gravity terrain corrections calculated using digital elevation models. Geophysics, 55,102–106.
Davis K., Kass, M. A., & Li Y. (2010). Rapid gravity and gravity gradiometry terrain correction via adaptive quadtree mesh discretization, SEG Denver Annual meeting.
Dehghani, G., & Makris J. (1984). The gravity field and crustal structure of Iran, Neues Jahrb, Geol. Palaeontol. Abh., 168, 215–229.
Delaloye, M., Jenny J., & Stampfli G. (1981) K-Ar dating in the eastern Elburz (Iran), Tectoniphysics, 79, T27-T36.
Gerkens J. C. d. A. (1989). Foundation of Exploration Geophysics.
Guest B., Guest A., and Axen G. (2007). Late Tertiary tectonic evolution of northern Iran: A case for simple crustal folding, Global Planet. Change, 58(1–4), 435–453, DOI:10.1016/j.gloplacha.2007.02.014.
Hammer, S. (1939). Terrain corrections for gravimeter stations. Geophysics, 4(3), 184-194.
Hayford, J.F., & Bowie, W. (1912). The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity. U.S.
Herrera-Barrientos, J., & Fernandez, R. (1991). Gravity terrain using Gaussian surfaces. Geophysics, 56, 724-730.
Jackson J., Haines J., & Holt W. (1995). The accommodation of Arabia‐Eurasia plate convergence in Iran, J. Geophysics. Res., 100(B8), 15205–15219, DOI: 10.1029/95JB01294.
Kane, M. F. (1962). A comprehensive system of terrain correction using a digital computer: Geophysics, 27(4), 455-462.
Nagy, D. (1966). The gravitational attraction of a right rectangular prism, Geophysics, 31(2), 362-371.
Parker, R.L. (1996). Improved Fourier terrain correction:Part II. Geophysics, 61, 365–372.
Pluff, D. (1976). Gravity and Magnetic fields of polygonal prisms and application to magnetic terrain corrections, Geophysics, 41, 727-741.
Rollin, K.E. (1990). Terrain corrections for gravity stations using a Digital Terrain Model. British Geological Survey Technical Report WKr89r8.
Sideris M.G. A. (1985). Fast Fourier Transform Method for computing terrain correction. Manuscripta Geodaetica. 10, 66-73.
Snyder D. B., & Barazangi M. (1986). Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations, Tectonics, 5(3), 361–373, DOI:10.1029/TC005i003p00361.
Stöcklin J. (1968). Structural history and tectonics of Iran: a review. Amer Assoc Petroleum Geol Bull, 52 (7), 1229–1258.
Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1976). Applied geophysics: Cambridge Univ. Press, Cambridge, 860 p.
Zanchi, A., Zanchetta S., Garzanti E., Balini M., Berra F., Mattei M., & Muttoni G. (2009). The Cimmerian evolution of the Nakhlak–Anarak area, central Iran, and its bearing for the reconstruction of the history of the Eurasian margin, Geol. Soc. Spec. Publ., 312, 261–286, DOI:10.1144/SP312.13.