زمین‌ساخت فعال سامانه گسلی امتدادلغز گیلاتو-تبریز، شمال‌غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زلزله‌شناسی، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

سامانه گسلی فعال گیلاتو-تبریز، با روند کلی شمال‌غرب-جنوب‌شرق و طول بیش از 400 کیلومتر، در شمال‌غرب ایران گسترش دارد. این سامانه گسلی امتدادلغز در دوره تاریخی و دستگاهی چندین زمین‌لرزه مخرب را تجربه کرده است. در این مقاله، با استفاده از تصویرهای ماهواره‌ای، تصویرهای DEM (مدل رقومی ارتفاعی)، شواهد میدانی، داده‌های زمین‌لرزه‌ای و GPS، زمین‌ساخت فعال این سامانه گسلی بررسی شده ‌است. این سامانه گسلی از جنوب‌شرق به شمال‌غرب، از سه زون گسلی اصلی شمال تبریز، میشو-تسوج، و گیلاتو-سیه‌چشمه-خوی تشکیل شده است. انتهای شمال‌غربی سامانه گسلی گیلاتو-تبریز به ساختار دم‌اسبی (horsetail structure) شامل گسل‌های نرمال در جنوب کاقیزمان (Kaghysman) ترکیه و انتهای جنوب‌شرقی آن به زون راندگی بزقوش ختم می‌شود. سامانه گسلی گیلاتو-تبریز ساختارهای زمین‌ساختی ترافشاری (transpression) و تراکششی (transtension) (گسل‌های انشعابی (splay faults)، گسل‌گامه‌ها (stepovers)، خمش‌ها (bendings) و حوضه‌های کششی-جدایشی (pull-apart basins) پدیدآمده در یک زون برشی راست‌گرد، با چیدمان پلکانی (en echelon)، را در بر دارد. زون گسلی شمال تبریز که عامل سه زمین‌لرزه تاریخی ویرانگر 04/11/1042، 6/7Mw ؛ 26/04/1721، 7/7 Mw؛ و 08/01/1780، 7/7 Mw، بوده ‌است، شامل سه گسل‌پاره (fault segment) امتدادلغز راست‌گرد بستان‌آباد، شیبلی و تبریز با چینش راست‌پله (right-stepping) است. زون گسلی میشو-تسوج که رومرکز میدانی زمین‌لرزه تاریخی 10/1786، 2/6 Mw، در نزدیکی آن تعیین شده است، در خمش ترافشاری شکل گرفته‌ در نواحی مرکزی سامانه گسلی گیلاتو-تبریز پدید آمده است. در سوی شمال‌غرب، زون گسلی امتدادلغز راست‌گرد گیلاتو-سیه‌چشمه-خوی، که رومرکز میدانی زمین‌لرزه تاریخی 02/07/1840، 4/7Mw ، در انتهای شمال‌ شمال‌غربی آن تعیین شده است، چندین حوضه کششی-جدایشی را پدید آورده است. جنبش‌شناختی کنونی سامانه گسلی گیلاتو-تبریز نقش کلیدی در لرزه‌ زمین‌ساخت شمال‌غرب ایران دارد و بخشی از همگرایی میان ‌صفحه‌های اوراسیا و عربستان را تعدیل می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Active tectonics of the Gailatu–Tabriz strike-slip fault system, northwestern Iran

نویسندگان [English]

  • Saeid Rahimzadeh
  • Noorbakhsh Mirzaei
Department of Seismology, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

Iran is a wide compressional deformation and seismic activity zone along the Alpine-Himalayan orogenic belt resulting from the conversion motion between the stable Arabian and Eurasian plates. Northwestern Iran is part of a complex tectonic system within the Arabia-Eurasia collision zone. The main active fault of northwestern Iran is the Gailatu–Tabriz strike-slip fault system (GTFS) that extends ~400 km in length from north of Mianeh (a town in the East-Azarbaijan province of Iran) to the southwest and south of Kaghsman (in Turkey) to the northwest. It has a conspicuous history of seismicity and a controlling role in the geodynamics of the region. In this study, we utilize satellite images, DEM images, field evidence, earthquake information, and GPS data, to investigate the active tectonic characteristics of the GTFS. From the southeast to the northwest, GTFS consists of three main fault zones, named: North Tabriz Fault, Mishu-Tasuj Fault, and Gailatu-Siah Cheshmeh-Khoy Fault. Near Kaghsman, the northwestern end of the GTFS forms a horsetail splay structure, with many faults having normal components, and to the east, GTFS merges with the Bozghush fault zone. GTFS shows a variety of transtension and transpression tectonic structures (stepovers, bendings, pull-apart basins, and splay structures) formed in the dextral shear zone. North Tabriz fault zone is characterized by three main NW striking right-stepping en echelon segments (Bostan Abad, Shebli, and Tabriz fault segments) and is known as the causative fault of three destructive historical earthquakes on 1042/11/04 (Mw 7/6), 1721/04/26 (Mw 7/7), and 1780/01/08 (Mw 7/7). To the east, it joins the Bozghush thrust fault zone that caused the 2019/11/07 (Mw 6/0) earthquake on its Shalgun-Yelimsi left-lateral strike-slip fault segment. In the central part of the GTFS, the Mishu-Tasuj fault zone is formed as a transpressional bend. The macroseismic epicenter of the 1786/10 (Mw 6/2) earthquake is located near this fault zone. Thrust faults in the southern part of the Mishu-Tasuj fault zone are parallel with close distances, and have uplifted the land masses; probably representing the migration of thrust faulting into the southern plains; similar to the Esfarayen and Sabzevar thrust faults in northeastern Iran. Four pull-apart basins have been created due to the movement of fault segments along the Gailatu-Siah Cheshmeh-Khoy fault. The current kinematics of the GTFS plays a key role in the tectonic of northwestern Iran and accommodates part of the convergence movement between the Eurasian and Arabian plates. Earthquake history and geometry of different segments of the GTFS imply seismic gap, especially on the North Tabriz fault, and faults interaction (e.g., between Shalgun-Yelimsi left-lateral strike-slip fault and south Bozghush thrust fault, and Gailatu-Siah Cheshmeh-Khoy right-lateral strike-slip fault and Tasuj thrust fault) which are important issues in seismic hazard in northwestern, especially for Tabriz City with a population of about 1.5 million.

کلیدواژه‌ها [English]

  • Gailatu–Tabriz fault system
  • Active tectonics
  • Stepovers
  • Bendings
  • Northwestern Iran
Ambraseys, N.N., & Melville, C.P. (1982). A History of Persian Earthquakes. Cambridge University Press, Cambridge, 219 pp.
Avouac, J. P., Ayoub, F., Wei, S., Ampuero, J. P., Meng, L., Leprince, S., Jolivet, R., Duputel, Z., & Helmberger, D. (2014). The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault. Earth Planet Sci. Lett., 391, 128-134.
Baniadama, F., Shabanianc, E., & Bellier, O. (2019). The kinematics of the Dasht-e Bayaz earthquake fault during PlioceneQuaternary: Implications for the tectonics of eastern Central Iran. Tectonophysics, 772, 228218.
Berberian, M. (1997). Seismic sources of the Transcaucasian historical earthquakes. In: Giardini, D., Balassanian, S. (Eds.), Historical and Prehistorical Earthquakes in the Caucasus. Kluwer Academic Publishing, Dordrecht, Netherlands, 28, 311- 233.
Berberian, M. (2014). Earthquakes and Coseismic Faulting on the Iranian Plateau: A Historical, Social and Physical Approach, Elsevier Series Development in Earth Surface Processes, 17, Amsterdam, the Netherlands, 776 pp.
Berberian, M., & Arshadi, S. (1976). On the evidence of the youngest activity of the North Tabriz fault and the seismicity of Tabriz city. Geol. Surv. Iran Rep., 39, 397–418.
Berberian, M., Jackson, J.A., Qorashi, M., Talebian, M., Khatib, M., & Priestley, K. (2000). The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone. Geophys. J. Int., 142, 283–299.
Berberian, M., & Yeats, R.S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bull. Seism. Soc. Am., 89, 120–139.
Cheng, F., Zuza, A.V.,  Haproff, P.J., Wu, C., Neudorf, C., Chang, H., Li, X., & Li, B. (2021). Accommodation of India-Asia convergence via strike-slip faulting and block rotation in the Qilian Shan fold-thrust belt, northern margin of the Tibetan Plateau. Journal of the Geological Society, 178, https://doi.org/10.1144/jgs2020-207.
Copley, A., & Jackson, J. (2006). Active tectonics of the Turkish–Iranian Plateau. Tectonics, 25, TC6006.
Copley, A., Faridi, M., Ghorashi, M., Hollingsworth, J., Jackson, J., Nazari, H., Oveisi, B., & Talebian, M. (2014). The 2012 August 11 Ahar earthquakes: consequences for tectonics and earthquake hazard in the Turkish-Iranian Plateau. Geophys. J. Int., 196, 15–21.
Djamour, Y., Vernant, P., Nankali, H., & Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network. Earth planet. Sci. Lett., 307, 27–34.
Dooley, T.P., & Schreurs, G. (2012). Analogue modeling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574 –575, 1–71.
Faridi, M., Burg, J.P., Nazari, H., Talebian, M., & Ghorashi, M. (2017). Active Faults Pattern and Interplay in the Azarbaijan Region (NW Iran). Geotectonics, 51, 428–437.
Faridi, M., Burg, J.P., Nazari, H., Haghipour, N., & Faridi. M. (2023). Neotectonics and paleoseismology of the North Tabriz Fault, Azerbaijan Region, Northwest Iran. Journal of Asian Earth Sciences, 254, 105727.
Eftekhar Nezhad, J. )1975(. Brief history and structural development of Azarbaijan. Geol. Surv. Iran Rep., 8.
Gurbuz, A., & Saroglu, F. (2019). Right-Lateral Strike-Slip Faulting and Related Basin Formations in the Turkish-Iranian Plateau. Developments in Structural Geology and Tectonics, 3, 101-130.
Haji-Aghajany, S., Voosoghi, B., Amerian, Y. (2019). Estimating the slip rate on the north Tabriz fault (Iran) from InSAR measurements with tropospheric correction using 3D ray tracing technique. Advances in Space Research, 64, 2199–2208.
Han, Y., ZhuQi, Z., & CHEN, Y. J. (2008). Interaction between adjacent left-lateral strike-slip faults and thrust faults: the 1976 Songpan earthquake sequence. Chinese Science Bulletin, 53, 2520-2526.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M.R., Feghhi, K., & Solaymani, S. (2003). Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics, 46, 903-915.
Hollingsworth, J., Fattahi, M., Walker, R., Talebian, M., Bahroudi, A., Bolourchi, M.J., Jackson, J., & Copley, A. (2010). Oroclinal bending, distributed thrust and strike-slip faulting, and the accommodation of Arabia–Eurasia convergence in NE Iran since the Oligocene. Geophys. J. Int., 181, 1214-1246.
Huang, L., & Liu, C.y. (2017). Three types of flower structures in a divergent-wrench fault zone. Journal of Geophysical Research: Solid Earth, 122, 10478–10497.
Isik, V., Saber, R., & Caglayan, A. (2012). Is there any relationship between active Tabriz fault zone and Bozkush fault zone, NW Iran? AGU Fall Meeting, 3–7 December 2012; San Francisco, USA, T33A–2640.
Jackson, J.A. (1992). Partitioning of strike-slip and convergent motion between Eurasia and Arabia in eastern Turkey and the Caucasus. J. Geophys. Res., 97, 12471-12479.
Jackson, J.A., & McKenzie. D.P. (1984). Active tectonics of the Alpine-Himalayan belt between western Turkey and Pakistan. Geophys. J. R. astr. Soc., 77, 185-264.
Jackson, J., Priestley, K., Allen, M., & Berberian, M. (2002). Active tectonics of the South Caspian Basin. Geophysical Journal International, 148, 214–245.
Karakhanian, A. S., Trifonov, V. G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Bayraktutan, M.S., Bagdassarian, B., Arakelian, S., Davtian, V., & Adilkhanyan, A. (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380, 189–219.
Karimzadeh, S., Cakir, Z., Osmanoglu, B., Schmalzle, G., Miyajima, M., Amiraslanzadeh, R., & Djamour, Y. (2013). Interseismc strain accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series. J. Geodyn., 66, 53–58.
Khodaverdian, A., Zafarani, H. & Rahimian, M. (2015). Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau. Tectonics, 34, 2190–2220.
Khorrami, F., Vernant, Ph., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S.A., Walpersdorf, A., Hosseini, S., Tavakoli, P., Aghamohammadi, A., & Alijanzade, M. (2019). An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophys. J. Int., 217, 832–843.
Liu, C.H., & Shi, Y. (2022). The role of fault interaction in earthquake migration in Central Sulawesi, Indonesia. Tectonophysics, 839, 229530.
Masson, F., Djamour, Y., Van Gorp, S., Chery, J., Tatar, M., Tavakoli, F., Nankali, H., & Vernant, P. (2006). Extension in NW Iran driven by the motion of the south Caspian basin. Earth Planetary Science Letters, 252, 180–188.
McKenzie, D.P. (1972). Active tectonics of Mediterranean region. Geophys. J. R. astr. Soc., 30, 109-185.
McKenzie, D. P. (1978). Active tectonics of the Alpine-Himalayan Belt: the Aegean Sea and surrounding regions. Geophys. J. R. astr. SOC., 55, 217-254.
Martínez J. M. M., Booth-Rea, G., Azañón, J.M., & Torcal, F. (2006). Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination. Tectonophysics, 422, 159–173.
Mearns, E., & Sornette, D. (2021). A transfer fault complex to explain the geodynamics and faulting mechanisms of the 1976 M7.8 Tangshan earthquake China. Journal of Asian Earth Sciences, 213, 104738.
Mirzaei, N., Gao, M., & Chen, Y.T. (1998). Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J. Earthquake prediction Research, 7, 465-495.
Mohammadi, A., Burg, J. P., & Guillong, M. (2022). The Siah Cheshmeh-Khoy-Misho-Tabriz fault (NW Iran) is a cryptic neotethys suture: evidence from detrital zircon geochronology, Hf isotopes, and provenance analysis. International Geology Review, 64, 182-202.
Mousavi-Bafrouei, S.H., & Babaie Mahani, A. (2020). A comprehensive earthquake catalogue for the Iranian Plateau (400 B.C. to December 31, 2018). J. Seismol., 24, 709–724.
Rahimzadeh, S., Mirzaei, N., & Moshasha, Y. (2023). Evidence of active faulting in the Azarshahr-Tabriz fault zone of northwestern Iran. Iranian Journal of Geophysics, 16, 53-68.
Rahimzadeh, S., & Mirzaei, N. (2023). The role of tear faults on the morphology and seismic activity of the Ashkhaneh fault zone, Kopeh-Dagh, NE Iran. Journal of Seismology and Earthquake Engineering (accepted for publication).
Rizza, M., Vernant, J., Ritz, F., Peyret, M., Nankali, H., Nazari, H., Djamour, Y., Salamati, R., Tavakoli, F., Chery, J., Mahan, S., & Masson, F. (2013). Morphotectonic and geodetic evidence for a constant slip-rate over the last 45 kyr along the Tabriz fault (Iran). Geophys. J. Int., 199, 25–37.
Saber, R., Isik, V., & Caglayan, A. (2013). Geology of the north Bozgush fault zone and its tectonic significance, NW Iran. Yerbilimleri, 34, 83–100.
Saber, R., Caglayan, A., & Isik, V. (2018). Relative tectonic activity assessment and kinematic analysis of the north Bozgush fault zone, NW Iran. Journal of Asian Earth Sciences, 164, 219–236.
Solaymani Azad, S. (2009). Evaluation de l'aléa Sismique Pour les Villes de Téhéran, Tabriz et Zandjan Dans le NW de l'Iran. Approche Morphotectonique et Paléosismologique. PhD. Thesis, University of Montpellier, France, pp. 150 (in French and in English).
Solaymani Azad., S, Philip, H, Dominguez, S., Hessami, K., Shahpasandzadeh, M., Foroutan, M., Tabassi ,H., & Lamothe, M. (2015). Paleoseismological and morphological evidence of slip rate variations along the North Tabriz fault (NW Iran). Tectonophysics, 640–641, 20–38.
Solaymani Azad, S., Nemati, M., Abbassi, M.R., Foroutan, M., Hessami, K., Dominguez, S., Bolourchi, M.J., & Shahpasandzadeh, M. )2019.( Active-couple indentation in geodynamics of NNW Iran: Evidence from synchronous left- and right-lateral co-linear seismogenic faults in western Alborz and Iranian Azarbaijan domains. Tectonophysics, 754, 1–17.
Soumaya, A., Ayed, N. B., Rajabi, M., Meghraoui, M., Delvaux, D., Kadri, A., Ziegler, M., Maouche, S., & Braham, A. (2018). Active faulting geometry and stress pattern near complex strike-slip systems along the Maghreb region: Constraints on active convergence in the western Mediterranean. Tectonics, 37, 3148–3173.
Stöcklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG Bull., 52, 1229–1258.
Su, Z., Wang, E.C., Hu, J.C., Talebian, M., & Karimzadeh, S. (2017). Quantifying the Termination Mechanism Along the North Tabriz-North Mishu Fault Zone of Northwestern Iran via Small Baseline PS-InSAR and GPS Decomposition. IEEE Journal of selected topics in applied earth observations and remote sensing, 10, 130-144.
Sylvester, A.G. (1988). Strike-slip faults. Bulletin of Geological Society of America, 100, 1666-1703.
Taghipour, K., Khatib, M.M., Heyhat, M., Shabanian, E., & Vaezihir, A. (2018). Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zones. Tectonophysics, 742–743, 15–33.
Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T.S., Kapetanidis, V., Yolsal-Çevikbilen, S., Erman, C., Keleş, D., Esmaeili, C., Tsironi, V., & Özkan, B. (2022). The 23 February 2020 Qotur-Ravian earthquake doublet at the Iranian-Turkish border: Seismological and InSAR evidence for escape tectonics. Tectonophysics, 838, 229482.
Valerio, E., Manzo, M., Casu, F., Convertito, V., De Luca, C., Manunta, M., Monterroso, F., Lanari, R., & De Novellis, V. (2020). Seismogenic Source Model of the 2019, Mw 5.9, East-Azerbaijan Earthquake (NW Iran) through the Inversion of Sentinel-1 DInSAR Measurements. Remote Sensing, 12, 1346.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., & Chery, J. (2004). Contemporary Crustal Deformation and Plate Kinematics in Middle East Constrained by GPS Measurements in Iran and Northern Oman. Geophys. J. Int., 157, 381-398.
Walker, R.T, Bergman, E., Jackson, J., Ghorashi, M., & Talebian, M. (2005). The 2002 June 22 Changureh (Avaj) earthquake in Qazvin province, northwest Iran: epicentral relocation, source parameters, surface deformation and geomorphology. Geophys. J. Int., 160, 707–720.
Walker, R., & Jackson, J. (2004). Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23, TC5010.
Walker, R. T., & Khatib, M. M. (2006). Active faulting in the Birjand region of NE Iran. Tectonics, 25, TC4016.
Yu, Y., Wang, X., Rao, G., & Wang, R. (2016). Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China. Tectonophysics, 679, 156–168.