تصویربرداری لرزه‌ای ساختار سه‌بعدی موج طولی گوشته بالایی ناحیه برخوردی زاگرس با استفاده از وارون‌سازی شکل موج⎽کامل

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زلزله‌شناسی، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

در این تحقیق تمرکز بر به‌کارگیری روش اجزای طیفی برای شبیه‌سازی لرزه‌نگارهای مصنوعی، به‌کارگیری فن الحاقی و الگوریتم بهینه‌سازی برودن⎽فلچر⎽گلدفارب⎽شانو(L-BFGS)  برای بازسازی ساختار لرزه‌ای موج طولی، در بخش فوقانی گوشته، می‌باشد. بدین‌منظور برای محاسبه لرزه‌نگاشت‌های مصنوعی از حل چشمه 37 زمین‌لرزه و مدل زمین‌لرزه‌ای مشترک (CSEM) استفاده شد. رویکرد چند مقیاسی برای دوره‌های بین 20 تا 80 ثانیه بر روی شکل‌موج‌های همین زمین‌لرزه‌ها، برای منطقه زاگرس که متشکل از حاشیه شمال‌شرقی سکوی عربی، کمربند چین‌خورده و گسل رانش زاگرس و حاشیه جنوب‌غربی صفحه اوراسیا می‌باشد، استفاده شد. در این مطالعه با به‌کارگیری تعداد محدودی شکل موج و با استفاده از روش وارون‌سازی شکل‌موج⎽کامل یک مدل سه⎽بعدی از ساختار لرزه‌ای طول‌موج بلند به‌دست آورده شد. با توجه به نتایج برآورد شده، یک تباین سرعتی شدید در بخش فوقانی گوشته سنگ‌کره و بخش زیرین آن در سرتاسر ناحیه برخورد زاگرس مشاهده می‌شود. این تباین سرعتی می‌تواند نتیجه برهم‌کنش ساختار گوشته سنگ‌کره فلات ایران با سکوی عربی در طی مراحل اولیه برخورد قاره به قاره بعد پایان فروانش صفحه اقیانوسی نئوتتیس باشد. تفاوت گستردگی و میزان نفوذ بخش ساختار پرسرعت‌تر نشان می‌دهد رفتار همگرایی صفحه عربستان به‌سمت صفحه ارواسیا در زاگرس شمالی با زاگرس مرکزی متفاوت است. در مدل به‌دست آمده، یک ناهنجاری پرسرعت در زیر بلوک لوت بازیابی شده‌است و اعوجاج در سرعت موج طولی در زیر ناحیه سنندج سیرجان به‌عنوان ناحیه بخیه بین دو ساختار زمین‌ساختی حاشیه جنوب‌غربی صفحه اوراسیا و حاشیه شمال‌شرقی سکوی عربی در نظر گرفته می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D seismic imaging of P–wave velocity structure for upper–most mantle of the Zagros collision zone using full waveform inversion

نویسندگان [English]

  • Neda Masouminia
  • Habib Rahimi
Department of Seismology, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

Convergence between Arabian and Eurasian plates since the onset of subducting of Neo-Tethys ocean beneath Eurasia in Jurassic (Berberian & Berberian, 1981) until closure in the late Cretaceous (Agard et al. 2005), then continental-continental collision in the late Eocene to Oligocene (Agard et al. 2011) has continued to the present. Because of the convergence, the Zagros folded zone has formed. So it is a necessary geophysical constraint to assess the geodynamic evolution of Zagros orogeny. For this, we need a new tomographic model of the lithospheric mantle beneath Zagros, avoiding artifacts in traditional methods, which is the motivation of this study. We report on the first fully three-dimensional (3D) waveform model for P–wave velocity structure beneath the Zagros collision zone using time- and frequency phase misfit.We used regional events which occurred inside the border of the country of Iran. They were recorded between 2012 to early 2016 by three-component sensors with 120s, 240s, and 360s cut-off periods. All used stations belonged to International Institute for Earthquake Engineering and Seismology (IIEES) and the Iranian Seismological Center (IRSC) in Iran. We also incorporated public seismograms from IRIS located in Turkey to satisfy the criterion. The explosion in computational power of the past decades has opened the door for use of the entire seismogram. Therefore, in this study, waveforms of 37 earthquakes were proccessed and we followed a multiscale approach (Bunks et al., 1995) for periods between 20 and 80 seconds.We started with the first generation of the Collaborative Seismic Earth Model (Fichtner et al. 2018) and applied the adjoint method and the Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization algorithm to reconstruct the upper–most mantle P-wave velocity structure. The Zagros collision zone consists of the margin of the Arabian platform-, the Zagros Fold and Thrust Belt-and the margin of the Eurasian Plate-the Iranian microplates. Unlike the required number data in tomography, using the full waveform inversion method was able to calculate a fully three-dimensional waveform model by a limited number of earthquakes, only for structures with long wavelengths. A strong velocity contrast is observed in the upper part of lithospheric mantle and its lower part throughout the Zagros collision zone, and we interpret it as the interaction of the mantle-lithosphere structure of the Iranian plateau with the Arabian platform during early stages of continent-continent collision after the end of subduction of the Netothetis oceanic plate, that indicates the difference in the extent of the higher-velocity structure; So the behavior of the convergence of the Arabian plate towards the Eurasian plate in the northern Zagros is different from the central Zagros. A high-velocity anomaly is resolved beneath the Lut block, and the anomalies in the P–wave velocity beneath the Sanandaj–Sirjan zone are interpreted as a suture zone between two tectonic structures of the southwestern margin of the Eurasian plate and the northeastern margin of the Arabian plate.

کلیدواژه‌ها [English]

  • Full waveform inversion
  • Adjoint method
  • Zagros collision zone
  • Upper–most mantel
  • P–wave velocity
Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May,D.A., Knepley, M.G., & Fichtner, A. (2019). Modular and flexible spectral-element waveform modeling in two and three dimensions. Geophys. J.Int., 216, 1675–1692.
Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94, 401–419.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148, 692–725.
Alinaghi, A Koulakov, I., & Thybo, H. (2007). Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran. Geophys. J. Int, 169, 1089–1102.
Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23.
Berberian, F., & Berberian, M. (1981). ectono-Plutonic Episodes in Iran. In Zagros Hindu Kush Himalaya Geodynamic Evolution(eds H.K. Gupta and F.M. Delany). AGU.
Blom, N. (2018). Towards imaging density using waveform tomography. doctoral thesis, University of Utrecht.
Blom, N., Alexandra, G., Alexey, & Fichtner, A. (2020). Dataset for Seismic waveform tomography of the Central and Eastern Mediterranean upper mantle. Solid Earth, 11.
Bozdağ, E., Trampert, J., & Tromp. J. (2011). Misfit functions for full waveform inversion based oninstantaneous phase and envelope measurements. Geophys. J. Int, 185, 845–870.
Bunks, C., Saleck, F. M., Zaleski, S., & Chavent, G. (1995). Multiscale seismic waveform inversion. Geophysics, 60, 1457–1473.
Fichtner, A. (2011). Full seismic waveform modelling and inversion. Springer-Verlag, 350.
Fichtner, A., Bunge, H-P., & Igel, H. (2006). The adjoint method in seismology – I. Theory. Phys. Earth Planet. Int, 157, 86–104.
Fichtner, A., Kennett, B. L., Igel, H., & Bunge, H. P. (2008). Theoretical background for continental-and global-scale full-waveform inversion in the time–frequency domain. Geophysical Journal International, 175(2), 665-685.
Fichtner, A., Kennett, B. L. N, Igel, H., & Bunge, H-P. (2009a). Spectral-element simulation and inversion of seismic waves in a spherical section of the Earth. J. Numer. Anal. Ind. Appl. Math, 4, 11–22.
Fichtner, A., Kennett, B.L., Igel, H., & Bunge, H-P. (2009b). Full seismic Waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophysical Journal International, 179, 1703-1725.
Fichtner, A., Igel, H., Bunge, H. P., & Kennett, B. L. (2009c). Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method. Journal of Numerical Analysis, Industrial and Applied Mathematics, 4(1-2), 11-22.
Fichtner, A. (2010). Full seismic waveform inversion for structural and source parameters (Doctoral dissertation, lmu).
Fichtner, A., Kennett, B.L., Igel, H., & Bunge, H-P. (2010). Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth and Planetary Science Letters, 290, 270-280.
Fichtner, A., Saygin, E., Taymaz, T., Cupillard, P., Capdeville, Y., & Trampert, J. (2013). The deep structure of the North Anatolian fault zone. Earth and Planetary Science Letters, 373, 109-117.
Fichtner, A., Van Herwaarden, D.-P., Afanasiev, M., Simute, S., Krischer, L., Cubuk-Sabuncu, Y., Taymaz, T., Colli, L., Saygin, E., Villasenor, A., Trampert, J., Cupillard, P., Bunge, H.-P., & Igel, H. (2018). The Collaborative Seismic Earth Model: Generation I. Geophysical Research Letters, 45.
Fichtner, A., & Villaseñor, A. (2015). Crust and upper mantle of the western Mediterranean–Constraints from full-waveform inversion. Earth and Planetary Science Letters , 428, 52-62.
Gao, Y., Tilmann, F., van Herwaarden, D.-P., Thrastarson, S., Fichtner, A., & Heit, B. (2021). Full waveform inversion beneath the Central Andes: Insight into the dehydration of the Nazca slab and delamination of the back-arc lithosphere. Journal of Geophysical Research: Solid Earth, 126.
Kaviani, A., Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., & Mokhtari, M. (2007). A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran). Geophys. J. Int, 171, 399–410.
Komatitsch, D. (1997). Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2Det 3D en milieu hétérogène. Thèse de doctorat de l’Université Paris 7.
Komatitsch, D., Barnes, C., & Tromp, J. (2000). Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 65, 1251-1260.
Koroni, M. (2018). Studying global discontinuities using full waveforms. doctoral thesis,University of Utrecht.
Krischer, L. (2017). Scaling full seismic waveform inversions [Doctoral dissertation, LMU MüNchen].
Krischer, L., Fichtner, A., Zukauskaite, S., & Igel, H. (2015). Large-scale seismic inversion framework. Seis. Res. Lett, 86, 1198-1207.
Lay, T., & Wallace, T. (1995). Modern Global Seismology. Elsevier Science. Retrieved from https://www.perlego.com/book/1827845/modern-global-seismology-pdf
Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophysical Journal International, 160, 1068-1080.
Mohammadi, N., Gholami, A., Rahimi, H., & Abdelkrim, A. (2020). Simultaneous tomography of all periods in surface wave analysis. Physics of the Earth and Planetary Interiors, 298.
Nolet, G. (2008). A breviary of seismic tomography. Cambridge University Press, Cambridge, UK.
Panning, M., & Romanowicz, B. (2006). A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int, 167, 361–379.
Paul, A., Kaviani, A., Hatzfeld, D., Tatar, M., & Pequegnat, C. (2010). Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). In: Leturmy, P., Robin, C. (Eds.),Tectonic and Stratigraphic Evolution of Zagros and Makran During the Meso Cenozoic. Geological Society, London, Special Publications, 330, 5–18.
Rahmani, M., Motaghi, K., Ghods, A., Sobouti, F., Talebian, M., Ai, Y., & Chen, L. (2019). Deep velocity image of the north Zagros collision zone (Iran) from regional and teleseismic tomography. Geophysical Journal International, 219, 1729-1740.
Sheriff, R., & Geldart, L. (1995). Exploration Seismology (2nd ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139168359
Simutė, S., Steptoe, H., Cobden, L., Gokhberg, A., & Fichtner, A. (2016). Full‐waveform inversion of the Japanese Islands region. Journal of Geophysical Research: Solid Earth, 121(5), 3722-3741.
Talebi, A., Koulakov, I., Moradi, A., Rahimi, H., & Gerya, T. (2020). Ongoing formation of felsic lower crustal channel by relamination in Zagros collision zone revealed from regional tomography. Scientific Reports, 10, 1–7.
Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the southern California crust. Science, 325, 988–992.
Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180, 433-462.
Tarantola, A. (1988). Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure Appl. Geophys, 128, 365–399.
Tarantola, A. (1986). A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51, 1893–1903.
Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.
Taylor Tillman, N. (2021). How old is Earth? Retrieved from www.space.com: https://www.space.com/24854-how-old-is-earth.html;
Thrastarson, S., Van Herwaarden, D-P., Krischer, L., & Fichtner, A. (2021). LASIF: LArge-scale Seismic Inversion Framework, an updated version. EarthArXiv.
Tromp, J., Tape, C. & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal, and banana-donut kernels, Geophys. J. Int. Geophys. J. Int, 160, 195–216.
Wehner, D., Blom, N., Rawlinson, N., Daryono, , Böhm, C., & Miller, M. S. (2022). SASSY21: A 3-D seismic structural model of the lithosphere and underlying mantle beneath Southeast Asia from multi-scale adjoint waveform tomography. Journal of Geophysical Research: Solid Earth, 127.
Zhu, H., Bozdağ, E., Duffy, T.S., & Tromp, J. (2013). Seismic attenuation beneath Europe and the North Atlantic: implications for water in the mantle. Earth and Planetary Science Letters. 381, 1-11.
Zhu, H., Bozdağ, E., Peter, D., & Tromp, J. (2012). Structure of the European upper mantle revealed by adjoint tomography. Nature Geoscience, 5, 493-498.
Zhu, H., Bozdağ, E., & Tromp, J. (2015). Seismic structure of the European upper mantle based on adjoint tomography. Geophysical Journal International, 201, 18-52.