بررسی هواویزها و آستانه‌های آن در غرب آسیا و ارتباط آن با پوشش‌گیاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیا، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران.

2 گروه جغرافیا، دانشکده ادبیات و علوم انسانى دکتر على شریعتى، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

گردوخاک پدیده هواشناسی رایج در مناطق خشک و نیمه‌‌خشک جهان است که در اثر عوامل طبیعی یا انسانی ایجاد می‌شود. شناسایی چشمه‌های فعال گردوخاک نخستین گام برای مقابله با آن و کاهش پیامدهای مخرب آن است. برای این منظور از دو شاخص عمق نوری هواویزها (AOD) و اختلاف بهنجار‌شده پوشش‌گیاهی  (NDVI)از سنجنده MODIS ماهواره Terra برای دو دهه گذشته (2020-2001) استفاده شده است. برای بررسی چشمه‌های فعال هواویز در منطقه موردمطالعه درصد فراوانی آستانه‌های هواویزها با سه آستانه 3/0، 5/0 و 1 مورد بررسی قرار گرفت. بیشینه مقادیر AOD مربوط به فصول بهار و تابستان است. به‌طورکلی شش کانون اصلی هواویزها بر اساس مقادیر AOD و شاخص FoO برای منطقه غرب آسیا قابل تشخیص است. این کانون‌های هواویز در پهنه اقلیمی بیابانی گرم‌وخشک (BWh) دیده می‌شوند. تنها کانون هووایز مؤثر در شمال‌شرقی ایران در پهنه اقلیمی بیابانی خشک و سرد (BWk) در کشور ترکمنستان قرار دارد. بررسی ماتریس ضریب همبستگی هواویزها با پوشش‌گیاهی نشان از رابطه معکوس دارد، البته این رابطه بیشتر برای چشمه‌های هواویزها صادق است. فارغ از نقش تعیین‌کننده ویژگی‌های سطحی در رخداد هواویزها، دو پدیده هواشناسی همانند باد شمال تابستانه و باد 120 روزه سیستان در تشکیل کانون‌هایی با مقادیر AOD بالاتر 5/0 و 1 نقش تعیین‌کننده‌ای دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating aerosol optical depth and their thresholds in West Asia and their relationship with vegetation

نویسندگان [English]

  • Shler Katorani 1
  • Mahmoud Ahmadi 1
  • Abbas Ali Dadashi-Roudbari 2
1 Department of Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
2 Department of Geography, Faculty of Dr. Ali Shariati Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Dust is a common meteorological phenomenon in arid and semi-arid regions of the world, which is caused by natural or human factors. The frequency and intensity of dust have increased in the last two decades. Identifying the active sources of dust is the first step in dealing with it and reducing its harmful consequences. For this purpose, two indices of aerosol optical depth (AOD) and the normalized difference vegetation index (NDVI) from the moderate resolution imaging spectroradiometer (MODIS) sensor of the Terra satellite have been used for the last two decades (2001-2021). To investigate dust events in the study area, the frequency of occurrence of aerosol optical depth (FoO) was investigated with three thresholds of 0.3, 0.5, and 1. The maximum AOD values are related to the spring and summer seasons. Regions with an aerosol optical depth of more than 1 are only limited to the warm period of the year and the areas of Mesopotamia region, Arabian deserts, desert areas of Syria, Dasht-e Margo and Dasht-e Sistan, and eastern Pakistan. The nationwide dust that covers wide areas in Saudi Arabia and the Persian Gulf countries and the west and southwest of Iran are mostly more than 0.5 in terms of AOD values. In general, six hotspots of dust can be identified based on the values of the AOD and FoO index for the West Asian region. These six regions are 1- Thar desert in Pakistan, 2- Rub' al Khali, Ad-Dahna, Al Nufud Al Kabirdesert in Saudi Arabia, 3- the Syrian desert, 4- the Desert regions of Iraq and especially the Mesopotamia region, 5- Dry and desert regions of Oman, 6- Dasht-e Margo and Dasht-e Sistan (in Afghanistan and Iran). These dust hotspots are found in arid, desert, and hot climate regions (BWh). The only effective hotspots in northeastern Iran are located in the arid, desert, and cold climate region (BWk) in Turkmenistan. In general, dust hotspots have an inverse relationship with vegetation, although this relationship is more for spring hotspots. Regardless of the determining role of surface characteristics in the occurrence of dust, two meteorological phenomena, the summer Shamal wind and the wind of 120 days of Sistan, have a determining role in the formation of hotspots with higher AOD values of 0.5 and 1. The area-averaged time series of MOD04 product values show that the value of AOD is increasing. Also, the results showed that the increase in AOD values from the 2010s onwards shows an upward trend compared to that of the 2000s. The dry bed of lakes and alluvial sources (Mesopotamia), human activities on the one hand, and the occurrence of drought and climate change, on the other hand, are directly related to the extent and intensity of dust events in West Asia.

کلیدواژه‌ها [English]

  • Aerosol
  • AOD thresholds
  • FoO
  • West Asia
احمدی، م.؛ شکیبا، ع. و داداشی رودباری، ع. (1398). بررسی نقش شاخص‌های پوشش‌گیاهی و مؤلفه‌های جغرافیایی مکان بر عمق نوری هواویزهای فصلی ایران. مجله فیزیک زمین و فضا، 45(1)، 211-233.
داداشی رودباری، ع. (1399). واکاوی وردایی زمانی- مکانی الگوهای قائم و افقی ریز گردها و ارزیابی بازخوردهای آب هوایی آن در ایران، رساله دکتری آب وهوا شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی.
زرین،آ.؛ صالح‌آبادی، ن.، مفیدی، ع. وداداشی رودباری، ع. (1401). بررسی فصلی گردوخاک‌ در شمال شرق ایران و شبیه‌‌سازی عددی رخدادهای گردوخاک‌ فرین با مدل WRF-CHEM. مجله فیزیک زمین و فضا، 48(2)،421-440.
عزیزی، ق.؛ میری، م. و نبوی، س. ا. (1391). ردیابی پدیده گرد و غبار در نیمه‌‌غربی ایران. مطالعات جغرافیایی مناطق خشک، 3(7)، 63-81.
Alam, K., Iqbal, M. J., Blaschke, T., Qureshi, S., & Khan, G. (2010). Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Advances in Space Research, 46(9), 1162-1176.
Alam, K., Trautmann, T., Blaschke, T., & Subhan, F. (2014). Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote sensing of environment, 143, 216-227.
Alizadeh Choobari, O. A., Zawar-Reza, P., & Sturman, A. (2014). The global distribution of mineral dust and its impacts on the climate system: A review. Atmospheric Research, 138, 152-165.
Ali, M.A., Bilal, M., Wang, Y., Qiu, Z., Nichol, J.E., Mhawish, A., de Leeuw, G., Zhang, Y., Shahid, S., Almazroui, M., & Islam, M.N (2022). Spatiotemporal changes in aerosols over Bangladesh using 18 years of MODIS and reanalysis data. Journal of Environmental Management, 315, 115097.
Alonso-Montesinos, J., Martínez, F. R., Polo, J., Martín-Chivelet, N., & Batlles, F. J. (2020). Economic effect of dust particles on photovoltaic plant production. Energies, 13(23), 6376.
Al-Shidi, H. K., Al-Reasi, H. A., & Sulaiman, H. (2022). Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments. International Journal of Environmental Health Research, 32(2), 264-276.
Caido, N. G., Ong, P. M., Rempillo, O., Galvez, M. C., & Vallar, E. (2022). Spatiotemporal Analysis of MODIS Aerosol Optical Depth Data in the Philippines from 2010 to 2020. Atmosphere, 13(6), 939.
Chen, S., Jiang, N., Huang, J., Zang, Z., Guan, X., Ma, X., Luo, Y., Li, J., Zhang, X., & Zhang, Y. (2019a). Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmospheric environment, 200, 50-60.
Chen, T., Bao, A., Jiapaer, G., Guo, H., Zheng, G., Jiang, L., Chang, C., & Tuerhanjiang, L., (2019b). Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Science of the Total Environment, 653, 1311-1325.
Creamean, J.M., Suski, K.J., Rosenfeld, D., Cazorla, A., DeMott, P.J., Sullivan, R.C., White, A.B., Ralph, F.M., Minnis, P., Comstock, J.M., & Tomlinson, J.M. (2013). Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science, 339(6127), 1572-1578.
Dadashi-Roudbari, A., & Ahmadi, M. (2021). An assessment of change point and trend of diurnal variation of dust storms in Iran: a multi-instrumental approach from in situ, multi-satellite, and reanalysis dust product. Meteorology and Atmospheric Physics, 133, 1523-1544.
Daniali, M., & Karimi, N. (2019). Spatiotemporal analysis of dust patterns over Mesopotamia and their impact on Khuzestan province, Iran. Natural Hazards, 97(1), 259-281.
Fan, B., Guo, L., Li, N., Chen, J., Lin, H., Zhang, X., Shen, M., Rao, Y., Wang, C., & Ma, L. (2014). Earlier vegetation green-up has reduced spring dust storms. Scientific reports, 4(1), 6749.
Fan, Y., Xu, W., Wang, Y., Wang, Y., Yu, S., & Ye, Q. (2020). Association of occupational dust exposure with combined chronic obstructive pulmonary disease and pneumoconiosis: a cross-sectional study in China. BMJ Open, 10(9), e038874.
Floutsi, A. A., Korras-Carraca, M. B., Matsoukas, C., Hatzianastassiou, N., & Biskos, G. (2016). Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002–2014) based on Collection 006 MODIS-Aqua data. Science of the Total Environment, 551, 292-303.
Gao, T., Han, J., Wang, Y., Pei, H., & Lu, S. (2012). Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy Lands in northern China during 2001–2008. Meteorological Applications, 19(3), 265-278.
Ginoux P, G. D., Christina Hsu N. (2010). Identification of anthropogenic and natural dust sources using moderate resolution imaging spectroradiometer (MODIS) deep blue level 2 data. Geophys Res Atmosphere, 115(5), 1–10.
Gkikas, A., Proestakis, E., Amiridis, V., Kazadzis, S., Di Tomaso, E., Tsekeri, A., Marinou, E., Hatzianastassiou, N., & Pérez García-Pando, C. (2021). ModIs Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set. Atmospheric Measurement Techniques, 14(1), 309-334.
Goudie, A. S. (2009). Dust storms: recent developments. J Environ Manage, 90(1), 89-94.
Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media.
Hamidi, M., Kavianpour, M. R., & Shao, Y. (2013). Synoptic analysis of dust storms in the Middle East. Asia-Pacific Journal of atmospheric sciences, 49, 279-286.
Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., & Zhang, L. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719-778.
Indoitu, R., Orlovsky, L., & Orlovsky, N. (2009). Dust storms in Middle Asia: Spatial and temporal variations. Ecosystems and Sustainable Development, 7(122), 353-364.
Indoitu, R., Orlovsky, L., & Orlovsky, N. (2012). Dust storms in Central Asia: Spatial and temporal variations. Journal of Arid Environments, 85, 62-70.
Karami, S., Hamzeh, N. H., Kaskaoutis, D. G., Rashki, A., Alam, K., & Ranjbar, A. (2021). Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeolian Research, 50, 100679.
Kurosaki, Y., Kinugasa, T., Nyamtseren, M., Liu, S., & Otani, S. (2022). Impacts of aeolian desertification and dust storms on ecosystems, economic development, and human health. In Combating Aeolian Desertification in Northeast Asia (pp. 129-158). Singapore: Springer Nature Singapore.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F. and Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989.
Li, J., Garshick, E., Al-Hemoud, A., Huang, S., & Koutrakis, P. (2020). Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Science of the total environment, 712, 136597.
Li, Z., Lau, W.M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M.G., Liu, J., Qian, Y., Li, J., Zhou, T., & Fan, J. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929.
Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J., & Xu, T. R. (2014). Global aerosol change in the last decade: An analysis based on MODIS data. Atmospheric Environment, 94, 680-686
Mares, M. A. (2017). Encyclopedia of deserts. University of Oklahoma Press.
Mei, D., Xiushan, L., Lin, S., & Ping, W. A. N. G. (2008). A dust-storm process dynamic monitoring with multi-temporal MODIS data. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 37, 965-970.
Meng, Z., & Lu, B. (2007). Dust events as a risk factor for daily hospitalization for respiratory and cardiovascular diseases in Minqin, China. Atmospheric environment, 41(33), 7048-7058.
Middleton, N. J. (1986). A geography of dust storms in South‐west Asia. Journal of Climatology, 6(2), 183-196.
Mofidi, A., & Zarrin, A. (2022). On the existence of summer Shamal wind induced by the Zagros Mountains in the Middle East. Geophysical Research Letters, 49(18), e2022GL100151.
Mukherjee, T., Vinoj, V., Midya, S. K., & Adhikary, B. (2020). Aerosol radiative impact on surface ozone during a heavy dust and biomass burning event over South Asia. Atmospheric Environment, 223, 117201.
Nabavi, S. O., Haimberger, L., & Samimi, C. (2016). Climatology of dust distribution over West Asia from homogenized remote sensing data. Aeolian Research, 21, 93-107.
Papi, R., Attarchi, S., Darvishi Boloorani, A., & Neysani Samany, N. (2022). Characterization of hydrologic sand and dust storm sources in the Middle East. Sustainability, 14(22), 1-17.
Qu, J. J., Hao, X., Kafatos, M., & Wang, L. (2006). Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geoscience and remote sensing letters, 3(4), 484-486.
Rushingabigwi, G., Nsengiyumva, P., Sibomana, L., Twizere, C., & Kalisa, W. (2020). Analysis of the atmospheric dust in Africa: The breathable dust's fine particulate matter PM2.5 in correlation with carbon monoxide. Atmospheric Environment, 224, 117319.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., & Jeong, M. J. (2014). MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24), 13-965.
Shao, Y., Klose, M., & Wyrwoll, K. H. (2013). Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres, 118(19), 11-107.
Sujitha, P. R., Santra, P., Bera, A. K., Verma, M. K., & Rao, S. S. (2022). Detecting dust loads in the atmosphere over Thar desert by using MODIS and INSAT-3D data. Aeolian Research, 57, 100814.
Sun, J., Ding, K., Lai, Z., & Huang, H. (2022). Global and Regional Variations and Main Drivers of Aerosol Loadings over Land during 1980– 2018. Remote Sensing, 14(4), 859.
Tao, M., Li, R., Wang, L., Lan, F., Wang, Z., Tao, J., Chen, L. (2020). A critical view of long-term AVHRR aerosol data record in China: Retrieval frequency and heavy pollution. Atmospheric Environment, 223, 117246.
Wang, W., Samat, A., Abuduwaili, J., Ge, Y., De Maeyer, P., & Van de Voorde, T. (2022). Temporal characterization of sand and dust storm activity and its climatic and terrestrial drivers in the Aral Sea region. Atmospheric Research, 275, 106242.
Warner, T. T. (2009). Desert meteorology. Cambridge University Press.
Wei, X., Chang, N. B., Bai, K., & Gao, W. (2020). Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 50(16), 1640-1725.
Yang, L., Mukherjee, S., Pandithurai, G., Waghmare, V., & Safai, P. D. (2019). Influence of dust and sea-salt sandwich effect on precipitation chemistry over the Western Ghats during summer monsoon. Scientific Reports, 9(1), 19171.
Zhang, X.X., Claiborn, C., Lei, J.Q., Vaughan, J., Wu, S.X., Li, S.Y., Liu, L.Y., Wang, Z.F., Wang, Y.D., Huang, S.Y., & Zhou, J. (2020). Aeolian dust in Central Asia: Spatial distribution and temporal variability. Atmospheric Environment, 238, 117734.