Allen, M.R., & Tett, S.F.B. (1999). Checking for model consistency in optimal fingerprinting. Clim. Dyn., 15(6), 419-434, https://doi.org/10.1007/s003820050291.
Ávila, A., Justino, F., Wilson, A., Bromwich, D., & Amorim, M. (2016). Recent precipitation trends, flash floods and landslides in southern brazil. Environ. Res. Lett., 11(11), https://doi.org/10.1088/1748-9326/11/11/114029.
Barnett, T., Hasselmann, K., Chelliah, M., Delworth, T., Hegerl, G., Jones, P., Rasmusson, E., Roeckner, E., Ropelewski, C., Santer, B., & Tett, S. (1999). Detection and attribution of recent climate change: A status report. Bull. Am. Meteorol. Soc., 80(12), 2631-2659. https://doi.org/10.1175/1520-0477(1999)080<2631:DAAORC>2.0.CO;2.
Barnett, T.P., Pierce, D.W., & Schnur, R. (2001). Detection of anthropogenic climate change in the world's oceans. Science, 292(5515), 270-274. https://doi.org/10.1126/science.1058304.
Barnett, T., Zwiers, F., Hengerl, G., Allen, M., Crowly, T., Gillett, N., Hasselmann, K., Jones, P., Santer, B., Schnur, R., Scott, P., Taylor, K., & Tett, S. (2005). Detecting and attributing external influences on the climate system: A review of recent advances. J. Climate, 18(9), 1291-1314. https://doi.org/10.1175/JCLI3329.1.
Bindoff, N.L., Stott, P.A., AchutaRao, K.M., Allen, M.R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I.I., Overland, J., Perlwitz, J., Sebbari, R., & Zhang, X. (2013). Detection and attribution of climate change: from global to regional. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Braganza, K., Karoly, D.J., Hirst, A.C., Stott, P., Stouffer, R.J., & Tett, S.F.B. (2004). Simple indices of global climate variability and change part II: Attribution of climate change during the twentieth century. Clim. Dyn., 22(8), 823-838, https://doi.org/10.1007/s00382-004-0413-1.
Chen, H., & Sun, J. (2017). Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44(5), 2436-2444. https://doi.org/ 10.1002/2016GL072439.
Christidis, N., Stott, P.A., Brown, S., Hegerl, G.C., & Caesar, J. (2005). Detection of changes in temperature extremes during the second half of the 20th century. Geophys. Res. Lett., 32(20), 1-4. https://doi.org/10.1029/2005GL023885.
Daly, C., Neilson, R.P., & Phillips, D.L. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology and Climatology, 33(2), pp. 140-158.
Darand, M., & Sohrabi, M.M. (2018). Identifying drought-and flood-prone areas based on significant changes in daily precipitation over Iran. Nat. Hazards, 90(3), 1427-1446, https://doi.org/ 10.1007/s11069-017-3107-9.
Dong, T., Zhu, X., Deng, R., Ma, Y., & Dong, W, (2022). Detection and attribution of extreme precipitation events over the Asian monsoon region. Weather and Clim. Extremes, 38(100497), https://doi.org/10.1016/j.wace.2022.100497.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Tank Klein, A.M.G., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19(3), 193-212, https://doi.org/10.3354/cr019193.
Ghasemi, A.R. (2015). Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos. Sci. Let., 16(3), 366-372, https://doi.org/10.1002/asl2.569.
Goovaerts, Pierre. (2003). Using elevation to aid the geostatistical mapping of rainfall erosivity. CATENA., 34, 227-242, 10.1016/S0341-8162(98)00116-7.
Hasselmann, K. (1993). Optimal fingerprints for the detection of time-dependent climate change. J. Clim., 6(10), 1957-1971, https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2.
Hegerl, G.C., Hasselmann, K., Cubasch, U., Mitchell, J.F.B., Roeckner, E., Voss, R., & Waszkewitz, J. (1997). Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change. Clim. Dyn., 13(9), 613-634, https://doi.org/10.1007/s003820050186.
Hegerl, G.C., Von Storch, H., Hasselmann, K., Santer, B.D., Cubasch, U., & Jones, P.D. (1996). Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J. Clim., 9(10), 2281-2306. https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2.
Hegerl, G.C., Zwiers, F.W., Stott, P.A., & Kharin, V.V. (2004). Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Clim., 17(19), 3683-3700, https://doi.org/10.1175/1520-0442(2004)017<3683:DOACIA>2.0.CO;2.
Hegerl, G., & Zwiers, F. (2011) Use of models in detection and attribution of climate change. Wiley Interdiscip Rev Clim Change, 2(4), 570-591. https://doi.org/10.1002/wcc.121.
Hegerl, G.C., Hoegh-Guldberg, O., Casassa, G., Hoerling, M.P., Kovats, R.S., Parmesan, C., Pierce, D.W., & Stott, P.A. (2010). Good practice guidance paper on detection and attribution related to anthropogenic climate change. In: Meeting report of the intergovernmental panel on climate change expert meeting on detection and attribution of anthropogenic climate change [Stocker TF, Field CB, Qin D, Barros V, Plattner G-K, Tignor M et al (eds.)]. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland.
Herring, S.C., Christidis, N., Hoell, A., Hoerling, M.P., & Stott, P. (2020). Explaining extreme events of 2018 from a climate perspective. Bull. Amer. Meteor. Soc., 101, 1-140, https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2018.1.
Kharin, V.V., Zwiers, F.W., Zhang, X., & Hegerl, G.C. (2007). Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim., 20(8), 1419-1444. https://doi.org/10.1175/JCLI4066.1.
Kharin, V.V., Zwiers, F.W., Zhang, X., & Wehner, M. (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change, 119(2), 345-357. https://doi.org/10.1007/s10584-013-0705-8.
King, A.D., Donat, M.G., Fischer, E.M., Hawkins, E., Alexander, L.V., Karoly, D.J., Dittus, A.J., Lewis, S.C., & Perkins, S.E. (2015). The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett., 10(9), https://doi.org/10.1088/1748-9326/10/9/094015.
Klein Tank, A.M.G., & Können, G.P. (2003). Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99. J. Clim., 16(22), 3665-3680, https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.
Lambert, F.H., Gillett, N.P., Stone, D.A., & Huntingford, C. (2005). Attribution studies of observed land precipitation changes with nine coupled models. Geophys. Res. Lett., 32(18), 1-4, https://doi.org/10.1029/2005GL023654.
Lambert, F.H., Stott, P.A., Allen, M.R., & Palmer, M.A. (2004). Detection and attribution of changes in 20th century land precipitation. Geophys. Res. Lett., 31(10), L10203 1-4, https://doi.org/10.1029/2004GL019545.
Li, H., Chen, H., & Wang, H. (2017). Effects of anthropogenic activity emerging as intensified extreme precipitation over china. J. Geophy. Res., 122(13), 6899-6914,. https://doi.org/10.1002/2016JD026251.
Min, S., Zhang, X., Zwiers, F.W., & Hegerl, G.C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470(7334), 378-381, https://doi.org/10.1038/nature09763.
Mondal, A., & Mujumdar, P.P. (2015). On the detection of human influence in extreme precipitation over India. J. Hydrol., 529, 1161-1172, https://doi.org/10.1016/j.jhydrol.2015.09.030.
Pahlavan, H., Zahraie, B., Nasseri M., & Mehdipour, M., (2018). Improvement of multiple linear regression method for statistical downscaling of monthly precipitation. International Journal of Environmental Science and Technology, 15(9), pp. 1897–1912, DOI: 10.1007/s13762-017-1511-z.
Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A., & Plummer, N. (2001). Report on the activities of the working group on climate change detection and related rapporteurs. Geneva: World Meteorological Organization.
Rahimzadeh, F., Asgari, A., & Fattahi, E. (2009). Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol., 29(3), 329-343, https://doi.org/10.1002/joc.1739.
Ribes, A., Azaís, J., & Planton, S. (2009). Adaptation of the optimal fingerprint method for climate change detection using a well-conditioned covariance matrix estimate. Clim. Dyn., 33(5), 707-722. https://doi.org/10.1007/s00382-009-0561-4.
Saadi, T., Alijani, B., Bavani, A.R.M., Akbary, M., Noury, M., & Saeidi, S. (2020). Detection and attribution of climate change in extreme precipitation using optimal fingerprinting (Case study: southwestern Iran). In 5th International Young Earth Scientists (YES) Congress “Rocking Earth’s Future”. German YES Chapter, GFZ German Research Centre for Geosciences. https://doi.org/10.2312/yes19.14.
Saboohi, R., Soltani, S., & Khodagholi, M. (2012). Trend analysis of temperature parameters in Iran. Theor. Appl. Climatol., 109(3-4), 529-547, https://doi.org/10.1007/s00704-012-0590-5.
Sarojini, B.B., Stott, P.A., & Black, E. (2016). Detection and attribution of human influence on regional precipitation. Nat. Clim. Change., 6(7), 669-675, https://doi.org/10.1038/nclimate2976.
Spagnoli, B., Planton, S., Déqué, M., Mestre, O., & Moisselin, J. (2002). Detecting climate change at a regional scale: The case of France. Geophys. Res. Lett., 29(10), 90-1.
Stott, P.A., Christidis, N., Otto, F.E.L., Sun, Y., Vanderlinden, J., van Oldenborgh, G.J., Vautard, R., von Storch, H., Walton, P., Yiou, P., & Zwiers, F.W. (2016). Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change, 7(1), 23-41. https://doi.org/10.1002/wcc.380.
Stott, P.A., Gillett, N.P., Hegerl, G.C., Karoly, D.J., Stone, D.A., Zhang, X., & Zwiers, F. (2010). Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev. Clim. Change, 1(2), 192-211, https://doi.org/10.1002/wcc.34.
Stott, P.A., Tett, S.F.B., Jones, G.S., Allen, M.R., Mitchell, J.F.B., & Jenkins, G.J. (2000). External control of 20th century temperature by natural and anthropogenic forcings. Science, 290(5499), 2133-2137, https://doi.org/10.1126/science.290.5499.2133.
Wang, H., Chen, Y., & Chen, Z. (2013). Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of china, during 1960-2010. Hydrol. Processes, 27(12), 1807-1818, https://doi.org/10.1002/hyp.9339.
Wang, Z., Jiang, Y., Wan, H., Yan, J., & Zhang, X. (2021). Toward optimal fingerprinting in detection and attribution of changes in climate extremes. J. Am. Stat. Assoc., 116(533), 1-13, https://doi.org/10.1080/01621459.2020.1730852.
Wen, Q.H., Zhang, X., Xu, Y., & Wang, B. (2013). Detecting human influence on extreme temperatures in China. Geophys. Res. Lett., 40(6), 1171-1176, https://doi.org/10.1002/grl.50285.
Zandi, O., Zahraie, B., Nasseri, M., & Behrangi, A. (2022). Stacking machine learning models versus a locally weighted linear model to generate high-resolution monthly precipitation over a topographically complex area. Atmospheric Research, 272, pp. 623–641, DOI: 10.1016/j.atmosres.2022.106159.
Zhai, P., Zhou, B., & Chen, Y. (2018). A review of climate change attribution studies. J. Meteorol. Res., 32(5), 671-692, https://doi.org/ 10.1007/s13351-018-8041-6.
Zhang, X., Aguilar, E., Sensoy, S., Melkonyan, H., Tagiyeva, U., Ahmed, N., Kutaladze, N., Rahimzadeh, F., Taghipour, A., Hantosh, T.H., & Albert, P., (2005). Trends in middle east climate extreme indices from 1950 to 2003. J. Geophys. Res. D. Atmos., 110(22), 1-12, https://doi.org/10.1029/2005JD006181.
Zhang, X., Wan, H., Zwiers, F.W., Hegerl, G.C., & Min, S. (2013). Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40(19), 5252-5257, https://doi.org/10.1002/grl.51010.
Zhang, X., Zwiers, F.W., Hegerl, G.C., Lambert, F.H., Gillett, N.P., Solomon, S., Stott, P.A., & Nozawa, T., (2007). Detection of human influence on twentieth-century precipitation trends. Nature, 448(7152), 461-465, https://doi.org/10.1038/nature06025.
Zohrabi, N., Goodarzi, E., Massah Bavani, A., & Najafi, H. (2017). Detection and attribution of climate change at regional scale: Case study of Karkheh river basin in the west of Iran. Theor. Appl. Climatol., 130(3-4), 1007-1020, https://doi.org/10.1007/s00704-016-1896-5.
Zohrabi, N., Massah Bavani, A., Goodarzi, E., & Eslamian, S. (2014). Attribution of temperature and precipitation changes to greenhouse gases in northwest Iran. Quat. Int., 345, 130-137. https://doi.org/10.1016/j.quaint.2014.01.026.
Zou, S., Abuduwaili, J., Duan, W., Ding, J., De Maeyer, P., Van De, Voorde, T., & Ma, L. (2021) Attribution of changes in the trend and temporal non-uniformity of extreme precipitation events in Central Asia. Sci Rep, 11(1), 15032. https://doi.org/10.1038/s41598-021-94486-w.