زارعی، ف.؛ قرایلو، م. و علیزاده چوبری، ا. (1396). تأثیر هواویزها بر بارش در شرایط رطوبتهای نسبی متفاوت: مطالعه موردی. مجله ژئوفیزیک ایران. 11(2)، 135-155.
مصطفوی، آ.؛ علیزاده، ا. و ثابت قدم، س. (1401). مطالعه موردی تأثیر هواویزها بر ویژگیهای ابر و بارش در شرایط رطوبت نسبی متفاوت. مجله ژئوفیزیک ایران. 16(1)، 33-46.
Albrecht, B.A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923),1227-1230.
Altaratz, O., Koren, I., Remer, L.A., & Hirsch, E. (2014). Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmospheric Research, 140, 38-60.
Andrea, M. O., & Rosenfeld, D. (2008). Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1-2), 13–41.
Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., Longo, K.M., & Silva-Dias, M.D. (2004). Smoking rain clouds over the Amazon. Science, 303(5662), 1337-1342.
Archer-Nicholls, S., Lowe, D., Schultz, D.M., & McFiggans, G. (2016). Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterization and resolution. Atmospheric Chemistry and Physics, 16(9), 5573-5594.
Alizadeh-Choobari, O., & Gharaylou, M. (2017). Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmospheric Research, 185, 53-64.
Colarco, P., Da Silva, A., Chin, M., & Diehl, T. (2010). Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth. Journal of Geophysical Research: Atmospheres, 115(D14).
Da Silva, N., Mailler, S., & Drobinski, P. (2018). March. Aerosol indirect effects on summer precipitation in a regional climate model for the Euro-Mediterranean region. In Annales Geophysicae, 36(2), 321-335.
Díaz-Fernández, J., Bolgiani, P., Santos-Muñoz, D., Sastre, M., Valero, F., Sebastián-Martín, L.I., Fernández-González, S., López, L., & Martín, M.L. (2021). On the characterization of mountain waves and the development of a warning method for aviation safety using WRF forecast. Atmospheric Research, 258, 105620.
Fan, J., Rosenfeld, D., Ding, Y., Leung, L.R., & Li, Z. (2012). Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophysical Research Letters, 39(9).
Fan, J., Yuan, T., Comstock, J.M., Ghan, S., Khain, A., Leung, L.R., Li, Z., Martins, V.J., & Ovchinnikov, M. (2009). Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. Journal of Geophysical Research: Atmospheres, 114(D22).
Geerts, B., Parsons, D., Ziegler, C.L., Weckwerth, T.M., Biggerstaff, M.I., Clark, R.D., Coniglio, M.C., Demoz, B.B., Ferrare, R.A., Gallus Jr, W.A., & Haghi, K. (2017). The 2015 plains elevated convection at night field project. Bulletin of the American Meteorological Society, 98(4), 767-786.
Ginoux, P., Garbuzov, D., & Hsu, N.C. (2010). Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. Journal of Geophysical Research: Atmospheres, 115(D5).
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., & Schepers, D. (2018). ERA5 hourly data on pressure levels from 1979 to present. Copernicus climate change service (c3s) climate data store (cds), 10.
Holloway, C.E., & Neelin, J.D. (2009). Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the atmospheric sciences, 66(6), 1665-1683.
Hong, S.Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly weather review, 134(9), 2318-2341.
Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., & Collins, W.D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).
Jiménez, P.A., Dudhia, J., González-Rouco, J.F., Navarro, J., Montávez, J.P., & García-Bustamante, E. (2012). A revised scheme for the WRF surface layer formulation. Monthly weather review, 140(3).898-918.
Kain, J.S. (2004). The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43(1), 170-181.
Kant, S., Panda, J., Pani, S.K., & Wang, P.K. (2019). Long-term study of aerosol–cloud–precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season. Theor. Appl. Clim., 136, 605–626.
Khain, A.P. (2009). Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environmental Research Letters, 4(1), 015004.
Khain, A.P., Beheng, K.D., Heymsfield, A., Korolev, A., Krichak, S.O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., & Van Den Heever, S.C. (2015). Representation of microphysical processes in cloud‐resolving models: Spectral (bin) microphysics versus bulk parameterization. Reviews of Geophysics, 53(2), 247-322.
Khain, A.P., BenMoshe, N., & Pokrovsky, A. (2008). Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. Journal of the Atmospheric Sciences, 65(6), 1721-1748.
Koren, I., Remer, L.A., Altaratz, O., Martins, J.V., & Davidi, A. (2010). Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmospheric Chemistry and Physics, 10(10).5001-5010.
Kumar, V.V., Protat, A., May, P.T., Jakob, C., Penide, G., Kumar, S., & Davies, L. (2013). On the effects of large-scale environment and surface types on convective cloud characteristics over Darwin, Australia. Monthly Weather Review, 141(4), 1358-1374.
Lee, D., Sud, Y.C., Oreopoulos, L., Kim, K.M., Lau, W.K., & Kang, I.S. (2014). Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia. Atmospheric Chemistry and Physics, 14(13), 6853-6866.
Li, G., Wang, Y., & Zhang, R. (2008). Implementation of a two‐moment bulk microphysics scheme to the WRF model to investigate aerosol‐cloud interaction. Journal of Geophysical Research: Atmospheres, 113(D15).
Li, Z., Lau, W.K.M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M.G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S.S., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P.M., Sugimoto, N., Babu, S.S., & Brasseur, G.P. (2016). Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 121(9), 4386–4403.
Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, Ø., Klimont, Z., Lund, M.T., & Mülmenstädt, J. (2017). Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmospheric Chemistry and Physics, 17(4), 2709-2720.
Niu, F., & Li, Z. (2012). Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmospheric Chemistry and Physics, 12(18), 8491-8498.
Platnick, S., & Twomey, S. (1994). Remote sensing the susceptibility of cloud albedo to changes in drop concentration. Atmospheric research, 34(1-4), 85-98.
Rosenfeld, D. (1999). TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophysical research letters, 26(20), 3105-3108.
Rosenfeld, D., Sherwood, S., Wood, R., & Donner, L. (2014). Climate effects of aerosol-cloud interactions. Science, 343(6169), 379-380.
Schiro, K.A., Neelin, J.D., Adams, D.K., & Lintner, B.R. (2016). Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. Journal of the Atmospheric Sciences, 73(10), 4043-4063.
Shapiro, A., Fedorovich, E., & Gebauer, J. G. (2018). Mesoscale ascent in nocturnal low-level jets. J. Atmos. Sci., 75, 1403–1427.
Sherwood, S.C., Minnis, P., & McGill, M. (2004). Deep convective cloud‐top heights and their thermodynamic control during CRYSTAL‐FACE. Journal of Geophysical Research: Atmospheres, 109(D20).
Storer, R.L., & Van den Heever, S.C. (2013). Microphysical processes evident in aerosol forcing of tropical deep convective clouds. Journal of the Atmospheric Sciences, 70(2), 430-446.
Storer, R.L., Van Den Heever, S.C., & Stephens, G.L. (2010). Modeling aerosol impacts on convective storms in different environments. Journal of the Atmospheric Sciences, 67(12), 3904-3915.
Tao, W.K., Chen, J.P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics, 50(2).
Thompson, G., & Eidhammer, T. (2014). A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. Journal of the atmospheric sciences, 71(10), 3636-3658.
Trier, S. B., Wilson, J. W., Ahijevych, D. A., & Sobash, R. A. (2017). Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 2919–2941.
Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 34, 1149-1152.
Twomey, S.A., Piepgrass, M., & Wolfe, T.L. (1984). An assessment of the impact of pollution on global cloud albedo. Tellus B, 36(5), 356-366.
Waite, M.L., & Khouider, B. (2010). The deepening of tropical convection by congestus preconditioning. Journal of the Atmospheric Sciences, 67(8), 2601-2615.
Wang, J., Feng, J., Wu, Q., & Yan, Z. (2016a). Impact of anthropogenic aerosols on summer precipitation in the Beijing–Tianjin–Hebei urban agglomeration in China: Regional climate modeling using WRF-Chem. Adv. Atmos. Sci., 33(6), 753–766.
Wang, X.C., Liu, Y.M., & Bao, Q. (2016b). Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions. Atmos. Res., 84, 122–132.
Wang, Y., Lee, K.-H., Lin, Y., Levy, M., & Zhang, R. (2014). Distinct effects of anthropogenic aerosols on tropical cyclones. Nat. Clim. Chang. 4, 368–373.
Zhang, M., Meng, Z., Huang, Y., & Wang, D. (2019). The mechanism and predictability of an elevated convection initiation event in a weak-lifting environment in central-eastern China. Monthly Weather Review, 147, 1823– 1841,
Zhang, Y., & Klein, S.A. (2010). Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. Journal of the Atmospheric Sciences, 67(9), 2943-2959.