Abidin, M.H.Z., Baharuddin, M.F.T., Zawawi, M.H., Md Ali, N., Madun, A., & Tajudin, S.A.A. (2015). Groundwater Seepage Mapping using Electrical Resistivity Imaging. Applied Mechanics and Materials, 773-774, 1524-1534. doi:10.4028/www.scientific.net/AMM.773-774.1524.
Adiri, Z., El-Harti, A., Jellouli, A., Lhissou, R., Maacha, L., Zouhair, M., & Bachoui, E. (2017). Comparison of Landsat-8, ASTER and Sentinel-1 satellite remote sensing data in Automatic Lineaments Extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv Space Res, 60, 2355–2367.
Al-Djazouli, M.O., Elmorabiti, K., Rahimi, A., Amellah, O., & Fadil, O.A.M. (2020). Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: a case of Waddai, eastern Chad. GeoJournal, 1–14. https://doi.org/10.1007/s10708-020-10160-0.
Al-Fares, W. (2011). Contribution of the Geophysical methods in characterizing the water leakage in Afamia B dam, Syria. Journal of Applied Geophysics, 75, 464-471.
Al-Fares, W. (2014). Application of Electrical Resistivity Tomography Technique for Characterizing Leakage Problem in Abu Baara Earth Dam, Syria. International Journal of Geophysics, (14), 1-9. http://dx.doi.org/10.1155/2014/368128.
Al-Fares, W. (2019). Characterization of the leakage problem in Salhab earthen dam using electrical resistivity tomography and SP measurements, Syria. Contributions to Geophysics and Geodesy, (49/4), 441-458 doi: 10.2478/congeo-2019-0023.
Ali, E.A., El-Khidir, S.O., Babikir, I.A.A., & Abd El-Rahman, E.M. (2012). Landsat ETM+7 digital image processing techniques for lithological and structural lineament enhancement: case study around Abidiya area, Sudan. Remote Sens J, 5, 83–89.
Bahuguna, I.M., Nayak, S., Tamilarsan, V., & Moses, J. (2003). Groundwater prospective zone in basaltic terrain using remote sensing. Jour. Indian Soc. Remote Sensing, 31(2), 102-105.
Bera, A., Mukhopadhyay, B.P., & Barua, S. (2020). Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arabian Journal of Geosciences, 13, 693. https://doi.org/10.1007/s12517-020-05702-2.
Bhattacharya, S., Das, S., Das, S., Kalashetty, M., & Warghat, S.R. (2020). An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region. Environ Dev Sustain, 1–6. https://doi.org/10.1007/s10668-020-00593-5.
Blanford, W.T. (1877). Geological notes on the Great Indian Desert between Sind and Rajasthan. Rec. Geol. Surv. India, 10(1),1-54.
Chandrasekharan, H. (1988) Geoelectrical investigation for groundwater in Thar Desert Western Rajasthan; Some case studies. Trans. Istd., 12, 155-168.
Chandrasekharan, H., & Navada, S.V. (2002). Interconnection between water bodies in the selected area of Rajasthan. In. Proceeding of the International Groundwater Conference (eds.) Thangrajan, M., Rai, S. N. and Singh V.S.) Oxford & IBH Pub Co Pvt. Ltd, New Delhi. 183-191.
Chopra, R.P.S. (1989). A temporal study of water logging in canal command area using remote sensing techniques. Journal of Applied Hydrology, 11(2), 29-37.
Dailey, D., Saucka, W., Sultana, M., Milewskib, A., Ahmeda, M., Latond, W.R., Elkadiria, R., Fosterd, J., Schmidta, C., & Al Harbia, T. (2015). Geophysical, remote sensing, GIS, and isotopic applications for a better understanding of the structural controls on groundwater flow in the Mojave Desert, California. Journal of Hydrology: Regional Studies, 3, 211-232.
Dar, I.A., Sankar, K., & Dar, M.A. (2010). Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hard rock terrain, Mamundiyar basin. J Hydrol, 394, 285–295.
Das, S. (2017). Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Model Earth Syst Environ, 3(4), 1589–1599. https://doi.org/10.1007/s40808-017-0396-7.
Denne, J.E., Yarger, H.L., Macfarlane, P.A., Knapp, R.W., Sophocleous, M.A., Lucas, J.R., & Steeples, D.W. (1984). Remote sensing and geophysical investigation of glacial buried valleys in Northestern Kansas. Ground Water, 22(1), 56-65.
Ebert, A. (1943). Grundlagen Zur Auswerkung geoelectrischer Tiefenmessungon. Gerlands Beitrage Zur Geopysik, BZ 10(1), 1-17.
Elbeih, S.F. (2014). An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng J., 6(1), 1–15. https://doi.org/10.1016/j.asej.2014.08.008.
Elmahdi, S.I., & Mohamed, M.M. (2014). Relationship between geological structures and groundwater flow and groundwater salinity in Al-Jaaw plain, United Arab Emirates, mapping and analysis by means of remote sensing and GIS. Arab J. Geosci, 7, 1249–1259.
Engelbert, P.J., Hotchkiss, R.H., & Kelly, W.E. (1997). Integrated remote sensing and geophysical techniques for locating canal seepage in Nebraska. Journal of Applied Geophysics, 38(2), 143-154. DOI: 10.1016/S0926-9851(97)00022-0.
Ghose, B. (1965). The genesis of the desert plains in central Luni basin of western Rajasthan. Jour. Indian Soc. Soil Sci., 13(2), 123-126.
Ghose, B., & Singh, S. (1975). Geomorphology of prior and present drainage networks and their control on groundwater in sandstone formations, Jodhpur district, Annual report, CAZRI, Jodhpur.
Guo, Y., Cui, Y.A., Xie, J., Luo, Y., Zhang, P., Liu, H., & Liu, J. (2022). Seepage detection in earth-filled dam from self-potential and electrical resistivity tomography. Engineering Geology, 306, 106750 https://doi.org/10.1016/j.enggeo.2022.106750.
Gupta, A.K., Sharma, J.R., Bothale, R.V., Dharmavat, R., & Singh, P. (2007). Jodhpur the gateway of India desert- study on rising ground water levels in the city. IGS News, 13, 42-52.
Hamimi, Z., Hagag, W., Kamh, S., & El-Araby, A. (2020). Application of remote-sensing techniques in geological and structural mapping of Atalla Shear Zone and Environs, Central Eastern Desert, Egypt. Arabian Journal of Geosciences, 13, 414. https://doi.org/10.1007/s12517-020-05324-8.
Himabindu, D., & Ramadass, G. (2003). Structural inferences from satellite image in and around Gadag, in the Dharwar Craton. Jour. Indian Soc. Remote Sensing, 31(3), 219-225.
Huang, Y., Fipps, G., Mass, S.J., & Flecher, R.S. (2009). Airborne remote sensing for detection of irrigation canal leakage. Irrig. and Drain. Published online in Wiley Inter Science, DOI:10.102/ird.511.
Isiorho, S. A., & Nkereuwem, T. O. (1996). Reconnaissance study of the relationship between lineaments and fractures in the southwest portion of the Lake Chad Basin. Journal of Environmental and Engineering Geophysics, 1(1), 47-54. https://doi.org/10:4133/JEEG.1.47.
Javed, A., & Wani, M.H. (2009). Delineation of Groundwater Potential Zones in Kakund Watershed, Eastern Rajasthan, Using Remote Sensing and GIS Techniques. Journal of the Geological Society of India, 73(2), 229-236.
Jigyasa, S. (2011). Seasonal variation in ground water quality of Jodhpur city and surrounding areas. Res. J. Chem. Environ., 5, 883–888.
Kansoh, R., Abd-El-Mooty, M., & Abd-El-Baky, R. (2020). Computing the Water Budget Components for Lakes by Using Meteorological Data. Civil Engineering Journal, 6(7), 1255-1265. http://dx.doi.org/10.28991/cej-2020-03091545.
Kar, A. (1986). Remote sensing of buried former streams in the extremely arid terrain of Jaisalmer, Indian desert for water and salinity. Proc. 7th Asian Remote Sensing Conference Oct., 23, 228.
Kar, A., & Ghosh, B. (1984). The Drisavati river system of India an assessment and new findings. The Geographical Jour., 150, 221-229.
Kaur, L., & Ramanathan, A.L. (2016). Assessment of Major Ion Chemistry in Ground Water and Surface Water of Kailana Lake Area of Jodhpur (Rajasthan). Jo WREM, 3(2),42-56.
Khan, M.A., & Mohrana, P.C. (2002). Use of remote sensing and Geographical Information System in the delineation and characterization of groundwater prospect zones. Jour. Indian Soc. Remote Sensing, 30(3), 131-141. DOI:10.1007/BF02990645.
Kumar, R., Pal, S.K., & Gupta, P.K. (2021). Water Seepage Mapping in an Underground Coal‑Mine Barrier Using Self‑potential and Electrical Resistivity Tomography. Mine Water and the Environment https://doi.org/10.1007/s10230-021-00788-w.
Machiwal, D., Jha, M.K., & Mal, B.C. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag, 25(5), 1359–1386. https://doi.org/10.1007/s11269-010-9749-y.
Mageshkumar, P., Subbaiyan, A., Lakshmanan, E., & Thirumoorthy, P. (2019). Application of geospatial techniques in delineating groundwater potential zones: a case study from South India. Arabian Journal of Geosciences, 12, 151 https://doi.org/10.1007/s12517-019-4289-0.
Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W.N.A., & Ramli, M.F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci, 7, 711–724.
Minsley, B.J., Burton, B.L., Ikard, S., & Powers, M.H. (2011). Hydrogeophysical Investigations at Hidden Dam, Raymond, California. Journal of Environmental & Engineering Geophysics, 16(4), 145-164 DOI: 10.2113/JEEG16.4.145.
Mshiu, E.E. (2011). Landsat Remote Sensing data as an alternative approach for geological mapping in Tanzania: a case study in the rung we volcanic province, south-western Tanzania. Tanz J Sci, 37, 26–36.
Mulder, V.L., de Bruin, S., Schaepman, M.E., & Mayr, T.R. (2011). The use of remote sensing in soil and terrain mapping – a review. Geoderma, 162, 1–19.
Nejad, S.G., Falah, F., Daneshfar, M., Haghizadeh, A., & Rahmati, O. (2017). Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto International, 32(2), 167–187. http://dx.doi.org/10.1080/10106049.2015.1132481.
Olasunkanmi, N.K., Aina, A., Olatunji, S., & Bawala, M. (2018). Seepage investigation on an existing dam using integrated geophysical methods. Journal of Environment and Earth Science, 8(5), 6-16,
Paliwal, B.S. (1992). Tectonics of the post-Aravalli mountain building activity and its bearing on the accumulation of sediments along the western flank of the Aravalli range, Rajathan, India. In: R. Ahmed and A.M. Sheikh, (eds.), Geology in the South Asia-I Proc. of GEOSAS-I Islamabad, Pakistan, Feb. 23-27, Hydrocarban Development Institute of Pakistan, 52-60.
Paliwal, B.S., & Rathore, P.S. (2000). Neoproterozoic volcanics and sedimentaries of Jodhpur: A reappraisal. In: Gyani, K.C., and Kataria, P. (Eds.), Proc. National Seminar “Tectonomagmatism, Geochemistry and Metamorphism of Precambrian Terrains”, University Department of Geology, Udaipur, pp.75-94.
Pathak, S., Bhadra, B.K., & Sharma, J.R. (2012). Study of influence of effluent on ground water using remote sensing, GIS and modelling techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B4, XXII ISPRS Congress, 25 August -1 September 2012, Melbourne, Australia.
Pratap, B., Raju, N.J., & Yadav G.S. (2014). Investigation of seepage channel using remote sensing technique in Jodhpur City Rajasthan. https://link.springer.com/book/10.10072F978-3-319-18663-4.
Pratap, B., & Yadav, G.S. (2016). Delineation of Ground water bearing fracture zone using VLF-EM methods in parts of Jodhpur City Rajasthan, India. Jour. of Applied Hydrology XXIX, (1-4), 01-08.
Qureshi, M.N., & Hinze, W.J. (1989). Workshop Overview Proc. Joint Indo-U.S. workshop on regional geophysical lineaments. Their tectonic and economic significances, Mem. Geol. Soc. India. Banglore 12, 3-10.
Rai, B., Tiwari, A., & Dubey, V.S. (2005). Identification of groundwater prospective zones by using remote sensing and geoelectrical methods in Jharia and Raniganj coalfields, Dhanbad district, Jharkhand state. J. Earth Syst. Sci., 114(5), 515–522.
Rajput, S., Kumar, D., & Ahmed, S. (2006). Delineation of groundwater prospect zones in hard rocks using remote sensing and GIS - A case study from Rajasthan. Journal of the Geological Society of India, 68(2), 259-268.
Raju, R.S., Raju, G.S., & Rajasekhar, M. (2019). Identification of groundwater potential zones in Mandavi River basin, Andhra Pradesh, India using remote sensing, GIS and MIF techniques. HydroResearch, 2, 1–11.
Rao, D.P. (1995). Remote sensing for earth resources. A.E.G. publication.
Rao, D.P. (2000). Applications of space technology in groundwater studies. Bhu-Jal News 15(1&2), 24-29.
Rijkstwaterstaat, (1969). Standard graphs for resistivity prospecting. EAEG, Netherlands.
Sahai, B., Bhattacharya, A., & Hegde, V.S. (1991). IRS-1A Application for Groundwater Targeting. Current Science, 61 (3&4), 172-179.
Sankar, K., Jegatheesan, M.S. & Balasubramanian, A., (1996). Geoelectrical resistivity study in the Kanyakumari district, Tamilnadu. Jour. of Applied Hydrology, 9(1&2), 83-90.
Shankarnarayan, K.A., Chatterji, P.C., & Singh, S. (1983). Role of remote sensing in ground water extraction for problem villages and habitants of hard rock regions of western Rajasthan. Proc. 2nd all India Conf. Drilling Equipment for groundwater extraction, New Delhi, 1/3 -1/25.
Sharafi, M., & Khazaei, S. (2013). Detection of High Local Groundwater Inflow to Rock Tunnels using ASTER Satellite Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 393-397.
Shekhar, S., & Pandey, A.C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int., 30, 402–421.
Shukla, J.P., & Pandey, S.M. (1991). Suitability of electrical resistivity survey for selecting ancient site in order to augment groundwater-A case study. Annals of Arid Zone, 30(3), 187-195.
Singh, A.K., & Prakash, S.R. (2002). An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub watershed, Mirzapur District, U.P. India. https://www.GISdevelopment.net.
Sinha, U.K., Kulkarni, K.M., Sharma, S., Ray, A., & Bodhankar, N. (2002). Assessment of aquifer systems using isotope techniques in urban centres Raipur, Calcutta and Jodhpur, India. IAEA-TECDOC-, 1298, 77–94.
Srivastava, P.K., & Bhattacharya, A.K. (2006). Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens, 27(20), 4599–4620.
Srivastava, V.K., Giri, D.N., & Bharadwaj, P. (2012). Study and Mapping of Ground Water Prospect using Remote Sensing, GIS and Geoelectrical resistivity techniques – a case study of Dhanbad district, Jharkhand, India. J. Ind. Geophys Union, 16 (2), 55-63.
Suganthi, S., Elango, L., & Subramanian, S.K. (2013). Groundwater potential zonation by Remote Sensing and GIS techniques and its relation to the Groundwater level in the Coastal part of the Arani and Koratalai River Basin, Southern India. Earth Sci. Res. SJ., 17(2), 87-95.
Tagnon, B.Q., Assoma, V.T., Mangoua, J.M.O., Douagui, A.G., & Savané, I. (2018). Contribution of SAR/RADARSAT-1 and ASAR/ENVISAT images to geological structural mapping and assessment of lineaments density in Divo-Oume area (Côte d’Ivoire). Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2018.12.001.
Takorabt, M., Toubal, A.C., Haddoum, H., & Siham Zerrouk, S. (2018). Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arabian Journal of Geosciences, 11: 76. https://doi.org/10.1007/s12517-018-3412-y.
Techerepanov, E.N., & Zolatrik, V.A. (2002) Application of remote sensing for hydrological studies in the Nebraska sand hills in G.S.A. abstract with program, Denver, Colorado, Oct. 27-31, p. 88.
Yadav, G.S., & Abolfazli, H. (1998). Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, Northwestern India. Jour. Appl. Geoph., 39, 35-51.
Yadav, G.S., Pandey, S.M., & Kumar Niraj. (2000). Geoelectrical soundings for locating fresh groundwater zones around Jhanwar area of Jodhpur district. Proc. National Seminar GWR-98, Dept. of Geophysics, B.H.U. 93-98.
Yadav, G.S., & Pratap, B. (2015). Identification of Responsible Source for Rise in Ground water Table of Jodhpur City, Rajasthan, India. Int. J. Earthquake Engg. Geol Sci., 5(1), 1–14.