نویسندگان
1 مربی، گروه فیزیک، دانشگاه آزاد اسلامی واحد نجف آباد، ایران
2 دانشیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران و قطب علمی مهندسی نقشهبرداری و مقابله با سوانح طبیعی، تهران، ایران
3 استاد، دانشکده برق وکامپیوتر دانشگاه تهران وقطب علمی کنترل وپردازش هوشمند ،تهران،ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The method of Artificial Neural Network is used as a suitable tool for intelligent interpretation of gravity data in this paper.
We have designed a Hopfield Neural Network to estimate the gravity source depth. The designed network was tested by both synthetic and real data. As real data, this Artificial Neural Network was used to estimate the depth of a Qanat (an underground channel) located at north entrance of the Institute of Geophysics and the result was very near to the real value of the depth.
کلیدواژهها [English]