آثار فازهای مختلف نوسان مدن- جولین بر برخی کمیت‌های هواشناختی وردسپهر درجنوب‌غرب آسیا

نویسندگان

1 استادیار، گروه مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

چکیده

در این مطالعه با استفاده از داده‌های بازتحلیل NCEP/NCAR و شاخص چندمتغیرۀ نوسان مدن-جولین تلاش شده است تا آثار فازهای مختلف این پدیده بر توزیع برخی از کمیت‌های مهم هواشناختی در منطقۀ خاورمیانه، بررسی و برای آن توضیحِ فیزیکی ارائه شود. به‌این منظور دوره‌های بحرانی MJO از سال 1974 تا 2015 براساس شاخص آن تفکیک شده ومیانگین و بی‌هنجاری کمیت‌های منتخب به‌دست آمده است. نتایج نشان داد که اثر هم‌شاری و واشاری ناشی از MJO روی اقیانوس هند تا خاورمیانه و شرق دریای مدیترانه نیز گسترش می‌یابد؛ به این صورت که ترابری جرم از مرکز همرفت به سوی شرق دریای مدیترانه در ترازهای بالای وردسپهر در فاز چهار سبب حرکت‌های فروسو در این منطقه می‌شود. این چرخه در فازهای هفت و هشت MJO عکس می‌‌شود و بی‌هنجاری حرکت‌های فراسو و واگرایی (همگرایی) در ترازهای بالای (پایین) وردسپهر در شرق مدیترانه را به‌وجود می‌آورد. جابه‌جایی جرم در این دو فاز در نهایت سبب ایجاد شرایط مناسب چرخندزایی در شرق مدیترانه در فاز چهار و از بین رفتن آن در فاز هشت می‌‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of different phases of Madden-Julian Oscillation on some tropospheric variables in south west Asia

نویسندگان [English]

  • Mohammad Ali Nasr-Esfahany 1
  • Alireza Mohebalhojeh 2
  • Farhang Ahmadi-Givi 2
1 Assistant Professor, Department of Irrigation engineering, Shahrekord university, Iran
2 Associate Professor, Department of Space Physics, Institute of Geophysics, University of Tehran, Iran
چکیده [English]

In this investigation, some aspects of the impact of the Madden-Julian Oscillation (MJO) on the subtropical region of the Northern Hemisphere together with the underlying mechanisms are studied using NCEP/NCAR reanalysis data. The data cover winter months (December to February) from 1974 to 2015. The main method used is that of averaging and analyzing of meteorological parameters associated with convection over the Indian Ocean and the mid-latitude large scale motions in the eight phases of MJO. The indices of MJO provided by the Australia's National Weather, Climate and Water Agency (BMRC) are used to identify the MJO phases. The averaging is carried out over the periods when MJO index is higher than unity and stays in the same phase for at least 5 days. The selected parameters are the “outgoing longwave radiation” (OLR), velocity potential and divergent component of the horizontal wind at 200 hPa level and vertical component of velocity in pressure coordinate denoted by . These parameters have been selected based on their potential to unravel the interaction between tropical and subtropical tropospheric circulations.
 The average of OLR in the selected period shows clear movement and amplification of convection cells associated with MJO from the Western Indian Ocean to the east. This confirms that the periods have been selected properly.
The distributions of averaged OLR, divergence at 200 hPa level and  at 600 hPa level show that the southwest Asia is significantly affected by MJO. Over the Indian Ocean, convective cells of MJO are strengthened from the phase 1 to phase 4 while anomalous convection at 200 hPa level and the associated downdraft at 600 hPa level in the southwest Asia are manifested. During the phases 3 and 4 of MJO, the convection cells associated with MJO exhibit the strongest anomalies over the east of Indian Ocean. The results thus suggest that the atmospheric circulation pattern provides adverse conditions for cyclogenesis and cyclone development in the southwest Asia and especially over Saudi Arabia and the south of Iran. On the contrary, all anomalous patterns are reversed in the phase 6 to phase 8 in the tropical and subtropical region. In these phases, anomalous convergence at 200 hPa and updraft motion at 600 hPa seen during the phases 3 and 4 in the southwest Asia are replaced by anomalous divergence and updraft motion, respectively. The change is such that the atmosphere circulation provides suitable conditions for cyclogenesis and cyclone development at the downstream end of the Mediterranean storm track.
The current study shows that confluence and diffluence associated with MJO are extended from the Indian Ocean to the Middle East and the east of Mediterranean Sea. The extension is such that the movement of mass from the Indian Ocean to the Middle East at the upper troposphere in the phase 4 results in the formation of a downdraft motion in the east of Mediterranean Sea. The reverse circulation seems to prevail in the phases 7 and 8 of the MJO. Anomalous updraft motion with divergence (convergence) at the upper (lower) troposphere in the east of the Mediterranean Sea are seen when convection is suppressed in the Western Indian Ocean. Another interesting point is that the convergence and divergence in the east of the Mediterranean Sea are dominantly due to variation of wind speed (and not confluence and diffluence), which may be caused by the effects of topography or interaction with mid-latitude flow. Finally, the distribution of OLR confirms the results of the dynamical analysis in the sense that in the Middle East, positive (negative) anomalous values of OLR are seen in the phases 3 and 4 (7 and 8) suggesting less (higher) than normal cloudiness and precipitation. This study shows that confluence and diffluence associated with MJO expand from Indian Ocean to Middle-East and east of Mediterranean Sea. So that mass movement from Indian Ocean to Middle-East in upper troposphere in phase 4 causes to formation a convection center and downdraft motion in the east of Mediterranean Sea. The reverse circulation seems to occur in the phase 7 and 8 of the MJO. Anomalous updraft motion with divergence (convergence) in upper (lower) troposphere in the Eastern Mediterranean Sea are seen when suppression of convection exists in the Western Indian Ocean. Another point is that convergence and divergence in east of Mediterranean Sea is due to the variation of wind speed (not confluence and diffluence) that may becaused by topographic effects or interaction with mid-latitude flow. Distribution of OLR confirms the results of this study so that in the Middle-East, positive (negative) anomalous value of OLR is seen in phase 3 and 4 (7 and 8) which suggests less (more) than normal cloudiness and precipitation.

کلیدواژه‌ها [English]

  • Cyclogenesis
  • Divergence
  • Madden-Julian Oscillation
  • Mediterranean
  • Outgoing Long-wave Radiation (OLR)
  • Potential velocity
عالم‌زاده، ش.، احمدی گیوی، ف.، محب‌الحجه، ع. و نصراصفهانی، م. ع.و 1392، تحلیل دینامیکی–آماری اثر متقابل نوسان اطلس شمالی (NAO) و نوسان مدن-جولیان (MJO)، مجله ژئوفیزیک ایران، 7(4)، 64-80.
قائدامینی، ح. و ناظم السادات، س. م. ج.، 1391، ارزیابی نشان پدیده نوسان های مادن-جولیان بر رخداد بارش‌های روزانه استان های سیستان و بلوچستان و فارس، نشریه آب و خاک، 26(6)، 1372-1383.
قائدامینی، ح. و گلکار، ف.، 1389، ارزیابی تأثیر پدیده مادن جولیان (MJO) بر رخداد دوران‌های خشک و تر استان خوزستان، مجله فیزیک زمین و فضا، 37(3)، 241-253.
ناظم‌السادات، س. م. ج. و شاهقلیان، ک.، 1393، چگونگی پدیداری سامانه‌های بارش‌زای سنگین در جنوب غربی ایران و پیوند آن با پدیده MJO، نشریه آب و خاک، 28(5)، 1072-1083.
ناظم‌السادات، س. م. ج. و قائدامینی، ح.، 1387، بررسی بررسی تأثیر نوسانات مادن جولیان بر وقوع کرانه بالایی و پایینی بارش (سیلاب و خشکی) ماههای فوریه تا آوریل در استان فارس، م. علوم و فنون کشاورزی و منابع طبیعی، دانشگاه صنعتی اصفهان، 46(4)، 477-490.
Alvarez, M. S., Veras, C. S., Kiladis, G. N. and Liebmann, B., 2016, Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America, Climate Dynamics, 46, 245-262.
Bond, N. A. and Vecchi, G., 2003, The influence of the Madden-Julian Oscillation on precipitation in Oregon and Washington, Weather and Forecasting, 18, 600-613.
Holton, J. R., 2004, An Introduction to Dynamic Meteorology. Elsevier Academic Press, 535pp.
Hoskins, B. J. and Karoly, D., 1981, The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.
Jia, X., Chen, L. J., Ren, L. J. and Li, C. Y., 2011, Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28(3), 521–533, doi: 10.1007/s00376-010-9118-z.
Jones, C., 2000, Occurrence of Extreme Precipitation Events in California and Relationships with the Madden–Julian Oscillation, J. Climate, 13, 3576–3587.
Jones, C., Waliser, D. E., Lau, K. M. and Stern, W., 2004, Global Occurrences of Extreme Precipitation and the Madden–Julian Oscillation: Observations and Predictability. J. Climate, 17, 4575–4589.
Kalnay, E. and Coauthors, 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kim, B. M., Lim, G. H. and Kim, K. Y., 2006, A new look at the midlatitude MJO teleconnection in the northern hemisphere winter, Q. J. R. Meteorol. Soc. 132, 485– 503.
Madden, R. A. and Julian, P. R., 1971, Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
Paegle, J. N., Byerle, L. A. and Mo, K. C., 2000, Intraseasonal Modulation of South American Summer Precipitation, Mon. Wea. Rev., 128, 837–850.
Schubert, S. D. and Park, C. K., 1991, Low-frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48, 629–650.
Thornes, J. B., 2003, Environmental Issues in the Mediterranean: Processes and Perspectives from the Past and Present, Routledge, 368pp.
Vecchi, G. A., and Bond N. A., 2004, The Madden--Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, doi:10.1029/2003GL018645.
Wheeler, M. C. and Hendon, H. H., 2004, An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Wea. Rev., 132, 1917-1932.