کاربست روش معادله‌گرا برای حل معادله پخش در شبکه‌های مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

امروزه ساختارهای شبکه‌ای در سیستم‌های طبیعی و مهندسی بسیار یافت می‌شوند، لذا استفاده از روش‌های کارآمد برای مدل‌سازی پدیده‌هایی مانند پخش و جابه‌جایی یک کمیت اسکالر (مانند دما یا غلظت) در این شبکه‌ها نمود پیدا می‌کند. یکی از روش‌های رایج برای مدل‌سازی این پدیده‌ها، مدل‌سازی عددی است. در این پژوهش با استفاده از روش معادله‌گرا پدیده یاد شده مدل‌سازی و بررسی شده‌است. در این تحقیق، روش اصلی در استفاده از روش معادله‌گرا، فرمول‌بندی پدیده پخش در کل شبکه به‌صورت یک دستگاه معادلات دیفرانسیل جزئی می‌باشد. درنهایت با اعمال شرایط مرزی مناسب در نقاط اتصال شبکه (با توجه به فیزیک پدیده)، دستگاه یادشده از طریق روش خطوط حل شد. رویکرد مذکور برای حل معادله پخش در سه نوع شبکه مختلف شامل درختی و حلقه‌ای به کار گرفته و نتایج بررسی شد. در مورد شبکه سوم، نتایج روش معادله‌گرا با نتایج روش عددی دیگر، که در آن یک معادله در کل شبکه با استفاده از روش تفاضل متناهی گسسته می‌شود، مورد مقایسه قرار گرفت. شاخص‌های خطا برای مقایسه مذکور حاکی از آن است که روش‌ها با یکدیگر همخوانی داشته که این امر بیانگر صحت کاربست روش معادله‌گرا می‌باشد. از مزیت‌های روش معادله‌گرا می‌توان به انعطاف‌پذیری بالای آن در مقایسه با روش‌های عددی پیشین و همچنین قابلیت آسان اعمال آن در بسته‌ها و ابزارهای عددی آماده، اشاره کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Equation-Oriented Modeling in solving Diffusion Equation in Different Types of Networks

نویسندگان [English]

  • Shayan Farhadi
  • Mehdi Mazaheri
Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Nowadays, network structures are found in many natural and engineered systems, e.g., river networks, microchannel networks, plant roots, human blood vessels, etc. Therefore, providing efficient methods for modeling phenomena such as diffusion, advection, etc. is very practical. One of the most common tools for modeling this phenomena is numerical modeling, as mathematics software is well- developed and powerful nowadays. In this research, a new approach called Equation-Oriented Modeling has been presented. In this approach each branch of the network has its own differential equation, and these branches are connected or coupled by boundary conditions. In other words, unlike classical modeling, EOM does not solve through the discretization of the partial differential equation in the whole domain of the network, while in this approach, each branch of the network has its own differential equation with its own specific diffusion coefficient and cross section area, then the problem is solved as a system of PDE. The main point of EOM is to formulate a physical problem in the network into a system of differential equations, which is finally solved by the Method of Lines. MOL is an efficient computational method used to solve partial differential equations or PDE systems. MOL is generally implemented in two steps, in the first step spatial derivatives are replaced by algebraic approximation. In the second step, the ordinary differential equation system is integrated with respect to time using any method, for example, in this research, we use the Runge-Kutta 4th order method. EOM was implemented to solve the diffusion equation in three types of networks, including tree-shaped and loop network. Then modeling results for 3 networks were presented as spatial concentration profiles in different paths in the networks. The model had reasonable results in the boundaries and branches according to the boundary conditions, loading and concentration functions, as well as the continuity of concentrations and loading by diffusion in the output results was reasonable. The boundary conditions that apply at the intersections of the branches include the continuity of concentration and the continuity of loading due to the diffusion phenomenon. The results of test case 3 were compared with another numerical model for validation, and three types of Error Parameters were calculated at different times between these two models. R-Squared (R2) was calculated in path (1-2-3-5-9), and its value was 0.99-1, which was the optimal value. This coefficient shows that the results of the EOM and the other numerical model has the same trend. Then, RMSE and MAE were also calculated and their values were approximately zero for all times. The modeling results for 3 networks were presented as spatial concentration profiles in different paths in the networks. The first advantage of the EOM approach is that the choice of terms in the differential equation is left to the user rather than the software developer, so that a wider range of phenomena can be modeled and the effects of different terms can be seen in the modeling. The second advantage of this approach over classical modeling is that the equations are available to the user as tools and model elements, and modeling complex networks such as tree-shaped, and Loop networks is not as complicated as classical models. The third advantage of EOM is the tools available in mathematical programs for optimization or linking with other programs. Since the heat equation is similar to the diffusion equation, the results of this research can be used for other important topics, such as solving the heat equation in microchannel networks for cooling systems, modeling pollutant transport in river networks, or diffusion modeling of solutes in plant roots.

کلیدواژه‌ها [English]

  • Equaion-Oriented Modeling
  • Diffusion Equation
  • Method of Lines
  • Tree-shaped network
  • Loop network
Addiscott, T. M., & Leeds-Harrison, P. (2005). DIFFUSION. Encyclopdeia of Soils in the Environment, 389-394. https://doi.org/https://doi.org/10.1016/B0-12-348530-4/00346-5
Alharbi, A. Y., Pence, D. V., & Cullion, R. N. (2003). Fluid Flow Through Microscale Fractal-Like Branching Channel Networks. Journal of Fluids Engineering, 125(6), 1051-1057. https://doi.org/10.1115/1.1625684.
Campos, D., Mendez, V., & Fort, J. (2004). Description of diffusive and propagative behavior on fractals. Phys Rev E Stat Nonlin Soft Matter Phys, 69(3 Pt 1), 031115. https://doi.org/10.1103/PhysRevE.69.031115
Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of Heat in Solids (second edition ed.). Oxford University
Chen, Y., & Cheng, P. (2002). Heat transfer and pressure drop in fractal tree-like microchannel nets. International Journal of Heat and Mass Transfer, 45(13), 2643-2648. https://doi.org/10.1016/s0017-9310(02)00013-3.
Chung, S.-Y., Chung, Y.-S., & Kim, J.-H. (2007). Diffusion and Elastic Equations on Networks. Publications of the Research Institute for Mathematical Sciences, 43(3), 699-725. doi:10.2977/prims/1201012039
Chung, S.-Y., & Choi, M.-J. (2017). A new condition for blow-up solutions to discrete semilinear heat equations on networks. Computers & Mathematics with Applications, 74(12), 2929-2939. https://doi.org/10.1016/j.camwa.2017.07.030
Crank, J. (1975). The Mathematics of Diffusion. Oxford University Press.
Dadvar, M., & Sahimi, M. (2007). The effective diffusivities in porous media with and without nonlinear reactions. Chemical Engineering Science, 62(5), 1466-1476. https://doi.org/10.1016/j.ces.2006.12.002.
F.Miguel, A., & O.Rocha, L. A. (2018). Tree-Shaped Fluid Flow and Heat Transfer. https://doi.org/10.1007/978-3-319-73260-2
Fan, W., & Liu, F. (2018). A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Applied Mathematics Letters, 77, 114-121. https://doi.org/10.1016/j.aml.2017.10.005.
Fischer, H. B. (1979). Mixing in inland and coastal waters. Academic Press. Publisher description http://www.loc.gov/catdir/description/els031/78022524.html
Gulick, D., & Scott, J. (2011). The Beauty of Fractals. https://doi.org/10.1017/cbo9780883859711
Hickson, R. I., Barry, S. I., Mercer, G. N., & Sidhu, H. S. (2011). Finite difference schemes for multilayer diffusion. Mathematical and Computer Modelling, 54(1-2), 210-220. https://doi.org/10.1016/j.mcm.2011.02.003.
Johnson, A. R., Hatfield, C. A., & Milne, B. T. (1995). Simulated diffusion dynamics in river networks. Ecological Modelling, 83(3), 311-325. https://doi.org/10.1016/0304-3800(94)00107-9.
Liu, C., Xie, D., She, W., Liu, Z., Liu, G., Yang, L. & Zhang, Y. (2018). Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material. Construction and Building Materials, 189, 1251-1263.
Mamo, D., & Purnachandra Rao, K. (2015). Mathematical Modeling and Simulation Study of SEIR disease and Data Fitting of Ebola Epidemic spreading in West Africa. Journal of Multidisciplinary Engineering Science and Technology, 2, 3159-0040.
Milišić, H., Hadžić, E., & Jusić, S. (2020). 2020//. Estimation of Longitudinal Dispersion Coefficient Using Field Experimental Data and 1D Numerical Model of Solute Transport. Paper presented at the Advanced Technologies, Systems, and Applications IV-Proceedings of the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (IAT 2019), Cham.
Naveros, I., C.Ghiaus, Ordonez, J., & Ruiz, D. P. (2016). Thermal Networks From The Heat Equation By Using The Finite Element Method. WIT Press, 106, 33-43. https://doi.org/10.2495/HT160041.
Neira, J., Ortiz, M., Morales, L., & Acevedo, E. (2015). Oxygen diffusion in soils: understanding the factors and processes needed for modeling. Chilean journal of agricultural research, 75, 35-44.
Poli︠a︡nin, A. D., & Zaĭt︠s︡ev, V. F. (2003). Handbook of exact solutions for ordinary differential equations (2nd ed.). Chapman & Hall/CRC. Publisher description http://www.loc.gov/catdir/enhancements/fy0646/2002073735-d.html
Romeo, G. (2020). Mathematics for dynamic economic models. In Elements of Numerical Mathematical Economics with Excel (pp. 139-215). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817648-1.00004-9
Sanders, F. E., Tinker, P. B., & Nye, P. H. (1971). Uptake of solutes by multiple root systems from soil: I. An electrical analog of diffusion to root systems. Plant and Soil, 34, 453-466.
Schiesser, W. E., & Griffiths, G. W. (2009). A compendium of partial differential equation models: method of lines analysis with Matlab. Cambridge University Press. Table of contents only http://www.loc.gov/catdir/toc/fy0905/2008045816.html
Shashkov, M., & Steinberg, S. (1996). Solving Diffusion Equations with Rough Coefficients in Rough Grids. Journal of Computational Physics, 405-383, (2)129, https://doi.org/10.1006/jcph.1996.0257.
Simon,T., & Koya, P.R. (2015). Modeling and Numerical Simulation of River Pollution Using Diffusion-Reaction Equation. American Journal of Applied Mathematics, 3(6), 335-340.
Thawornchak, W. (2001). Equation-Based and Agent-Based Modeling of Supply Networks.
Vaidya, N.K., Morgan, M., Jones, T., Miller, L., Lapin, S., & Schwartz, E.J. (2015). Modelling the epidemic spread of an H1N1 influenza outbreak in a rural university town. Epidemiol Infect, 143(8), 1610-1620.
Xu, P., Sasmito, A. P., Yu, B., & Mujumdar, A. S. (2016). Transport Phenomena and Properties in Treelike Networks. Applied Mechanics Reviews, 68(4). https://doi.org/10.1115/1.4033966.
Xu, P., Wang, X. Q., Mujumdar, A. S., Yap, C., & Yu, B. M. (2009). Thermal characteristics of tree-shaped microchannel nets with/without loops. International Journal of Thermal Sciences, 48(11), 2139-2147. https://doi.org/10.1016/j.ijthermalsci.2009.03.018.
Yu, X. f., Zhang, C. p., Teng, J. t., Huang, S. y., Jin, S. p., Lian, Y. f., Cheng, C. h., Xu, T. t., Chu, J. C., Chang, Y. J., Dang, T., & Greif, R. (2012). A study on the hydraulic and thermal characteristics in fractal tree-like microchannels by numerical and experimental methods. International Journal of Heat and Mass Transfer, 55(25-26), 7499-7507. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.050.
Zheng, N., Liu, P., Wang, X., Shan, F., Liu, Z., & Liu, W. (2017). Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Applied Thermal Engineering, 123, 471-484. https://doi.org/10.1016/j.applthermaleng.2017.05.112.
Zheng, Q., Xu, J., Yang, B., & Yu, B. (2013). Research on the effective gas diffusion coefficient in dry porous media embedded with a fractal-like tree network. Physica A: Statistical Mechanics and its Applications, 392(6), 1557-1566. https://doi.org/10.1016/j.physa.2012.12.003.